21 research outputs found

    Inter-Numerology Interference Analysis for 5G and Beyond

    Get PDF
    One of the defining characteristics of 5G is the flexibility it offers for supporting different services and communication scenarios. For this purpose, usage of multiple numerologies has been proposed by the 3rd Generation Partnership Project (3GPP). The flexibility provided by multi-numerology system comes at the cost of additional interference, known as inter-numerology interference (INI). This paper comprehensively explains the primary cause of INI, and then identifies and describes the factors affecting the amount of INI experienced by each numerology in the system. These factors include subcarrier spacing, number of used subcarriers, power offset, windowing operations and guard bands

    Efficient Fast-Convolution-Based Waveform Processing for 5G Physical Layer

    Get PDF
    This paper investigates the application of fast-convolution (FC) filtering schemes for flexible and effective waveform generation and processing in the fifth generation (5G) systems. FC-based filtering is presented as a generic multimode waveform processing engine while, following the progress of 5G new radio standardization in the Third-Generation Partnership Project, the main focus is on efficient generation and processing of subband-filtered cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM) signals. First, a matrix model for analyzing FC filter processing responses is presented and used for designing optimized multiplexing of filtered groups of CP-OFDM physical resource blocks (PRBs) in a spectrally well-localized manner, i.e., with narrow guardbands. Subband filtering is able to suppress interference leakage between adjacent subbands, thus supporting independent waveform parametrization and different numerologies for different groups of PRBs, as well as asynchronous multiuser operation in uplink. These are central ingredients in the 5G waveform developments, particularly at sub-6-GHz bands. The FC filter optimization criterion is passband error vector magnitude minimization subject to a given subband band-limitation constraint. Optimized designs with different guardband widths, PRB group sizes, and essential design parameters are compared in terms of interference levels and implementation complexity. Finally, extensive coded 5G radio link simulation results are presented to compare the proposed approach with other subband-filtered CP-OFDM schemes and time-domain windowing methods, considering cases with different numerologies or asynchronous transmissions in adjacent subbands. Also the feasibility of using independent transmitter and receiver processing for CP-OFDM spectrum control is demonstrated

    Study on Air Interface Variants and their Harmonization for Beyond 5G Systems

    Full text link
    [ES] La estandarización de la Quinta Generación de redes móviles o 5G, ha concluido este año 2020. No obstante, en el año 2014 cuando la ITU empezó el proceso de estandarización IMT-2020, una de las principales interrogantes era cuál sería la forma de onda sobre la cual se construiría la capa física de esta nueva generación de tecnologías. El 3GPP se comprometió a entregar una tecnología candidata al proceso IMT-2020, y es así como dentro de este proceso de deliberación se presentaron varias formas de onda candidatas, las cuales fueron evaluadas en varios aspectos hasta que en el año 2016 el 3GPP tomó una decisión, continuar con CP-OFDM (utilizada en 4G) con numerología flexible. Una vez decidida la forma de onda, el proceso de estandarización continuó afinando la estructura de la trama, y todos los aspectos intrínsecos de la misma. Esta tesis acompañó y participó de todo este proceso. Para empezar, en esta disertación se evaluaron las principales formas de onda candidatas al 5G. Es así que se realizó un análisis teórico de cada forma de onda, destacando sus fortalezas y debilidades, tanto a nivel de implementación como de rendimiento. Posteriormente, se llevó a cabo una implementación real en una plataforma Software Defined Radio de tres de las formas de onda más prometedoras (CP-OFDM, UFMC y OQAM-FBMC), lo que permitió evaluar su rendimiento en términos de la tasa de error por bit, así como la complejidad de su implementación. Esta tesis ha propuesto también el uso de una solución armonizada como forma de onda para el 5G y sostiene que sigue siendo una opción viable para sistemas beyond 5G. Dado que ninguna de las forma de onda candidatas era capaz de cumplir por sí misma con todos los requisitos del 5G, en lugar de elegir una única forma de onda se propuso construir un transceptor que fuese capaz de construir todas las principales formas de onda candidatas (CP-OFDM, P-OFDM, UFMC, QAM-FBMC, OQAM-FBMC). Esto se consiguió identificando los bloques comunes entre las formas de onda, para luego integrarlos junto con el resto de bloques indispensables para cada forma de onda. La motivación para esta solución era tener una capa física que fuese capaz de cumplir con todos los aspectos del 5G, seleccionando siempre la mejor forma de onda según el escenario. Esta propuesta fue evaluada en términos de complejidad, y los resultados se compararon con la complejidad de cada forma de onda. La decisión de continuar con CP-OFDM con numerología flexible como forma de onda para el 5G se puede considerar también como una solución armonizada, ya que al cambiar el prefijo cíclico y el número de subportadoras, cambian también las prestaciones del sistema. En esta tesis se evaluaron todas las numerologías propuestas por el 3GPP sobre cada uno de los modelos de canal descritos para el 5G (y considerados válidos para sistemas beyond 5G), teniendo en cuenta factores como la movilidad de los equipos de usuario y la frecuencia de operación; para esto se utilizó un simulador de capa física del 3GPP, al que se hicieron las debidas adaptaciones con el fin de evaluar el rendimiento de las numerologías en términos de la tasa de error por bloque. Finalmente, se presenta un bosquejo de lo que podría llegar a ser la Sexta Generación de redes móviles o 6G, con el objetivo de entender las nuevas aplicaciones que podrían ser utilizadas en un futuro, así como sus necesidades. Completado el estudio llevado a cabo en esta tesis, se puede afirmar que como se propuso desde un principio la solución, tanto para el 5G como para beyond 5G, la solución es la armonización de las formas de onda. De los resultados obtenidos se puede corroborar que una solución armonizada permite alcanzar un ahorro computacional entre el 25-40% para el transmisor y del 15-25% para el receptor. Además, fue posible identificar qué numerología CP-OFDM es la más adecuada para cada escenario, lo que permitiría optimizar el diseño y despliegue de las redes 5G. Esto abriría la puerta a hacer lo mismo con el 6G, ya que en esta tesis se considera que será necesario abrir nuevamente el debate sobre cuál es la forma de onda adecuada para esta nueva generación de tecnologías, y se plantea que el camino a seguir es optar por una solución armonizada con distintas formas de onda, en lugar de solo una como sucede con el 5G.[CA] L'estandardització de la Quinta Generació de xarxes mòbils o 5G, ha conclòs enguany 2020. No obstant això, l'any 2014 quan la ITU va començar el procés d'estandardització IMT-2020, uns dels principals interrogants era quina seria la forma d'onda sobre la qual es construiria la capa física d'esta nova generació de tecnologies. El 3GPP es va comprometre a entregar una tecnologia candidata al procés IMT-2020, i és així com dins d'este procés de deliberació es van presentar diverses formes d'onda candidates, les quals van ser avaluades en diversos aspectes fins que l'any 2016 el 3GPP va prendre una decisió, continuar amb CP-OFDM (utilitzada en 4G) amb numerología flexible. Una vegada decidida la forma d'onda, el procés d'estandardització va continuar afinant la frame structure (no se m'ocorre nom en espanyol), i tots els aspectes intrínsecs de la mateixa. Esta tesi va acompanyar i va participar de tot este procés. Per a començar, en esta dissertació es van avaluar les principals formes d'onda candidates al 5G. És així que es va realitzar una anàlisi teòrica de cada forma d'onda, destacant les seues fortaleses i debilitats, tant a nivell d'implementació com de rendiment. Posteriorment, es va dur a terme una implementació real en una plataforma Software Defined Radio de tres de les formes d'onda més prometedores (CP-OFDM, UFMC i OQAM-FBMC), la qual cosa va permetre avaluar el seu rendiment en termes de la taxa d'error per bit, així com la complexitat de la seua implementació. Esta tesi ha proposat també l'ús d'una solució harmonitzada com a forma d'onda per al 5G i sosté que continua sent una opció viable per a sistemes beyond 5G. Atés que cap de les forma d'onda candidates era capaç de complir per si mateixa amb tots els requeriments del 5G, en compte de triar una única forma d'onda es va proposar construir un transceptor que fóra capaç de construir totes les principals formes d'onda candidates (CP-OFDM, P-OFDM, UFMC, QAM-FBMC, OQAM-FBMC). Açò es va aconseguir identificant els blocs comuns entre les formes d'onda, per a després integrar-los junt amb la resta de blocs indispensables per a cada forma d'onda. La motivació per a esta solució era tindre una capa física que fóra capaç de complir amb tots els aspectes del 5G, seleccionant sempre la millor forma d'onda segons l'escenari. Esta proposta va ser avaluada en termes de complexitat, i els resultats es van comparar amb la complexitat de cada forma d'onda. La decisió de continuar amb CP-OFDM amb numerología flexible com a forma d'onda per al 5G es pot considerar també com una solució harmonitzada, ja que al canviar el prefix cíclic i el número de subportadores, canvien també les prestacions del sistema. En esta tesi es van avaluar totes les numerologías propostes pel 3GPP sobre cada un dels models de canal descrits per al 5G (i considerats vàlids per a sistemes beyond 5G), tenint en compte factors com la mobilitat dels equips d'usuari i la freqüència d'operació; per a açò es va utilitzar un simulador de capa física del 3GPP, a què es van fer les degudes adaptacions a fi d'avaluar el rendiment de les numerologías en termes de la taxa d'error per bloc. Finalment, es presenta un esbós del que podria arribar a ser la Sexta Generació de xarxes mòbils o 6G, amb l'objectiu d'entendre les noves aplicacions que podrien ser utilitzades en un futur, així com les seues necessitats. Completat l'estudi dut a terme en esta tesi, es pot afirmar que com es va proposar des d'un principi la solució, tant per al 5G com per a beyond 5G, la solució és l'harmonització de les formes d'onda. dels resultats obtinguts es pot corroborar que una solució harmonitzada permet aconseguir un estalvi computacional entre el 25-40% per al transmissor i del 15-25% per al receptor. A més, va ser possible identificar què numerología CP-OFDM és la més adequada per a cada escenari, la qual cosa permetria optimitzar el disseny i desplegament de les xarxes 5G. Açò obriria la porta a fer el mateix amb el 6G, ja que en esta tesi es considera que serà necessari obrir novament el debat sobre quina és la forma d’onda adequada per a esta nova generació de tecnologies, i es planteja que el camí que s’ha de seguir és optar per una solució harmonitzada amb distintes formes d’onda, en compte de només una com succeïx amb el 5G.[EN] The standardization of the Fifth Generation of mobile networks or 5G is still ongoing, although the first releases of the standard were completed two years ago and several 5G networks are up and running in several countries around the globe. However, in 2014 when the ITU began the IMT-2020 standardization process, one of the main questions was which would be the waveform to be used on the physical layer of this new generation of technologies. The 3GPP committed to submit a candidate technology to the IMT-2020 process, and that is how within this deliberation process several candidate waveforms were presented. After a thorough evaluation regarding several aspects, in 2016 the 3GPP decided to continue with CP-OFDM (used in 4G) but including, as a novelty, the use of a flexible numerology. Once the waveform was decided, the standardization process continued to fine-tune the frame structure and all the intrinsic aspects of it. This thesis accompanied and participated in this entire process. To begin with, this dissertation evaluates the main 5G candidate waveforms. Therefore, a theoretical analysis of each waveform is carried out, highlighting its strengths and weaknesses, both at the implementation and performance levels. Subsequently, a real implementation on a Software Defined Radio platform of three of the most promising waveforms (CP-OFDM, UFMC, and OQAM-FBMC) is presented, which allows evaluating their performance in terms of bit error rate, as well as the complexity of its implementation. This thesis also proposes the use of a harmonized solution as a waveform for 5G and argues that it remains a viable option for systems beyond 5G. Since none of the candidate waveforms was capable of meeting on its own with all the requirements for 5G, instead of choosing a single waveform, this thesis proposes to build a transceiver capable of building all the main waveforms candidates (CP-OFDM, P-OFDM, UFMC, QAM-FBMC, OQAM-FBMC). This is achieved by identifying the common blocks between the waveforms and then integrating them with the rest of the essential blocks for each waveform. The motivation for this solution is to have a physical layer that is capable of complying with all aspects of beyond 5G technologies, always selecting the best waveform according to the scenario. This proposal is evaluated in terms of complexity, and the results are compared with the complexity of each waveform. The decision to continue with CP-OFDM with flexible numerology as a waveform for 5G can also be considered as a harmonized solution, since changing the cyclic prefix and the number of subcarriers, changes also the performance of the system. In this thesis, all the numerologies proposed by the 3GPP are evaluated on each of the channel models described for 5G (and considered valid for beyond 5G systems), taking into account factors such as the mobility of the user equipment and the operating frequency. For this, a 3GPP physical layer simulator is used, and proper adaptations are made in order to evaluate the performance of the numerologies in terms of the block error rate. Finally, a sketch of what could become the Sixth Generation of mobile networks or 6G is presented, with the aim of understanding the new applications that could be used in the future, as well as their needs. After the completion of the study carried out in this thesis, it can be said that, as stated from the beginning, for both 5G and beyond 5G systems, the solution is the waveform harmonization. From the results obtained, it can be corroborated that a harmonized solution allows achieving computational savings between 25-40% for the transmitter and 15-25% for the receiver. In addition, it is possible to identify which CP-OFDM numerology is the most appropriate for each scenario, which would allow optimizing the design and deployment of 5G networks. This would open the door to doing the same with 6G, i.e., a harmonized solution with different waveforms, instead of just one as in 5G.Flores De Valgas Torres, FJ. (2020). Study on Air Interface Variants and their Harmonization for Beyond 5G Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/164442TESI

    D4.1 Draft air interface harmonization and user plane design

    Full text link
    The METIS-II project envisions the design of a new air interface in order to fulfil all the performance requirements of the envisioned 5G use cases including some extreme low latency use cases and ultra-reliable transmission, xMBB requiring additional capacity that is only available in very high frequencies, as well as mMTC with extremely densely distributed sensors and very long battery life requirements. Designing an adaptable and flexible 5G Air Interface (AI), which will tackle these use cases while offering native multi-service support, is one of the key tasks of METIS-II WP4. This deliverable will highlight the challenges of designing an AI required to operate in a wide range of spectrum bands and cell sizes, capable of addressing the diverse services with often diverging requirements, and propose a design and suitability assessment framework for 5G AI candidates.Aydin, O.; Gebert, J.; Belschner, J.; Bazzi, J.; Weitkemper, P.; Kilinc, C.; Leonardo Da Silva, I.... (2016). D4.1 Draft air interface harmonization and user plane design. https://doi.org/10.13140/RG.2.2.24542.0288

    Mixed-numerology for radio access network slicing

    Get PDF
    Network slicing is a sustainable solution to support the various service types in future networks. In general, network slicing is composed of core network slicing and radio access network (RAN) slicing. The former can be realized by allocating dedicated virtualized core network functionalities to specific slices. Similarly, RAN slicing includes the virtualization and allocation of the limited RAN resources. From the physical layer perspective, supporting RAN slicing implies the need of unique radio-frequency (RF) and baseband (BB) configurations, i.e., numerology, for each slice to fulfil its quality of service requirements. To support such a heterogeneous mixed-numerology (MN) system, the transceiver architecture and widely used signal processing algorithms in the traditional single-service system need to be significantly changed. A clear understanding of mixed-numerology signals multiplexing and isolation is of importance to enable spectrum and computation efficient RAN slicing. Meanwhile, an effective channel estimation is the guarantee of performing almost all receiver signal processing. Fundamental channel estimation investigations also constitute a crucial piece of MN study. This thesis aims to systematically investigate the OFDM-based MN wireless communication systems in terms of system modeling, channel equalization/ estimation, and power allocation. First, a comprehensive mixed-numerology framework with two numerologies is proposed and characterized by physical layer parameters. According to the BB and RF configurations imparities among numerologies, four scenarios are categorized and elaborated on the configuration relationships of different numerologies. System models considering the most generic scenario are established for both uplink and downlink transmissions. Two theorems are proposed as the basis of MN algorithms design, which generalize the original circular convolution property of the discrete Fourier transform. The proposed theorems verifies the feasibility of the one-tap channel equalization in MN systems. However, they also indicate that both BB and RF configuration differences result in inter-numerology-interference (INI). Besides, severe signal distortion may occur when the transmitter and receiver numerologies are different. Therefore, a pre-coding algorithm is designed by utilizing the theorems to compensate the system degradation resulting from the signal distortion. INI cancellation algorithms are proposed based on collaboration detection scheme and joint numerologies signal models for downlink and uplink, respectively. Numerical results shows that the proposed algorithms are able to significantly improve the system performance. Another objective of this thesis is to verify the effectiveness of the existing channel estimation algorithms and to develop new ones in the presence of MN. To achieve these goals, three channel estimation methods, i.e., least-square linear interpolation, least-square ‘sinc’ interpolation, and minimum mean square error ‘sinc’ interpolation are implemented and theoretically analyzed in both single-user and multi-user scenarios. The analysis reveals that the pilot signal to noise ratio, pilot distance, and position of pilot signals jointly affect the channel estimation. In particular, a signal distortion factor caused by the RF configuration difference is spotted to seriously affect the channel estimation performance, whose values are mainly decided by the degree of configuration mismatch. On the other hand, INI also degrades the channel estimation in the MN system. The existence of interference-free subcarriers is demonstrated based on the derived closed-form expression of the INI. Pilot design principles in terms of pilot signal placement are developed according to the analyses. Numerical results shows that minimum mean square error based channel estimation has the best performance and robustness to the configuration mismatch. In addition, the proposed pilot design principles could produce comparable channel estimation results with the legacy OFDM systems where no INI and signal distortion exist. The two problems associated with the MN system, i.e., signal distortion and INI, could negatively affect the power distribution of the received MN signals, and the system performance in terms of spectrum efficiency may be seriously degraded. Consequently, it becomes outstandingly important to introduce an efficient subcarrier-level power allocation scheme in such kinds of systems to counter the performance degradation caused by the configuration mismatch. As such, this thesis makes the attempt to extend the two-numerology model to contain ‘M’ different numerologies. Based on the model, closed-form expressions of desired signal, interference, and noise are derived. The derivation shows that interference generated from different numeroloies are linearly superimposed in the frequency domain. The distribution of signal-to-interference-plus-noiseratio (SINR) is analyzed theoretically. An iterative convex approximation power allocation algorithm is proposed by applying the derived SINR. Results show that the power allocation algorithm contributes to remarkable spectrum efficiency improvement compare to the other schemes, and an extra subband filtering process could bring about even higher performance. The work presented in this thesis provides guidance for multi-numerology system design in terms of parameter selection, and the frame structure and algorithms design. Moreover, it presents a solution as to how the radio access network slicing can be underpinned in the physical layer in a spectrum efficient way

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    Mobility management in multi-RAT multiI-band heterogeneous networks

    Get PDF
    Support for user mobility is the raison d'etre of mobile cellular networks. However, mounting pressure for more capacity is leading to adaption of multi-band multi-RAT ultra-dense network design, particularly with the increased use of mmWave based small cells. While such design for emerging cellular networks is expected to offer manyfold more capacity, it gives rise to a new set of challenges in user mobility management. Among others, frequent handovers (HO) and thus higher impact of poor mobility management on quality of user experience (QoE) as well as link capacity, lack of an intelligent solution to manage dual connectivity (of user with both 4G and 5G cells) activation/deactivation, and mmWave cell discovery are the most critical challenges. In this dissertation, I propose and evaluate a set of solutions to address the aforementioned challenges. The beginning outcome of our investigations into the aforementioned problems is the first ever taxonomy of mobility related 3GPP defined network parameters and Key Performance Indicators (KPIs) followed by a tutorial on 3GPP-based 5G mobility management procedures. The first major contribution of the thesis here is a novel framework to characterize the relationship between the 28 critical mobility-related network parameters and 8 most vital KPIs. A critical hurdle in addressing all mobility related challenges in emerging networks is the complexity of modeling realistic mobility and HO process. Mathematical models are not suitable here as they cannot capture the dynamics as well as the myriad parameters and KPIs involved. Existing simulators also mostly either omit or overly abstract the HO and user mobility, chiefly because the problems caused by poor HO management had relatively less impact on overall performance in legacy networks as they were not multi-RAT multi-band and therefore incurred much smaller number of HOs compared to emerging networks. The second key contribution of this dissertation is development of a first of its kind system level simulator, called SyntheticNET that can help the research community in overcoming the hurdle of realistic mobility and HO process modeling. SyntheticNET is the very first python-based simulator that fully conforms to 3GPP Release 15 5G standard. Compared to the existing simulators, SyntheticNET includes a modular structure, flexible propagation modeling, adaptive numerology, realistic mobility patterns, and detailed HO evaluation criteria. SyntheticNET’s python-based platform allows the effective application of Artificial Intelligence (AI) to various network functionalities. Another key challenge in emerging multi-RAT technologies is the lack of an intelligent solution to manage dual connectivity with 4G as well 5G cell needed by a user to access 5G infrastructure. The 3rd contribution of this thesis is a solution to address this challenge. I present a QoE-aware E-UTRAN New Radio-Dual Connectivity (EN-DC) activation scheme where AI is leveraged to develop a model that can accurately predict radio link failure (RLF) and voice muting using the low-level measurements collected from a real network. The insights from the AI based RLF and mute prediction models are then leveraged to configure sets of 3GPP parameters to maximize EN-DC activation while keeping the QoE-affecting RLF and mute anomalies to minimum. The last contribution of this dissertation is a novel solution to address mmWave cell discovery problem. This problem stems from the highly directional nature of mmWave transmission. The proposed mmWave cell discovery scheme builds upon a joint search method where mmWave cells exploit an overlay coverage layer from macro cells sharing the UE location to the mmWave cell. The proposed scheme is made more practical by investigating and developing solutions for the data sparsity issue in model training. Ability to work with sparse data makes the proposed scheme feasible in realistic scenarios where user density is often not high enough to provide coverage reports from each bin of the coverage area. Simulation results show that the proposed scheme, efficiently activates EN-DC to a nearby mmWave 5G cell and thus substantially reduces the mmWave cell discovery failures compared to the state of the art cell discovery methods

    Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond

    Get PDF
    As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Commmunications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks
    corecore