344 research outputs found

    Energy and performance-aware application mapping for inhomogeneous 3D networks-on-chip

    Get PDF
    Three dimensional Networks-on-Chip (3D NoCs) have evolved as an ideal solution to the communication demands and complexity of future high density many core architectures. However, the design practicality of 3D NoCs faces several challenges such as thermal issues, high power consumption and area overhead of 3D routers as well as high complexity and cost of vertical link implementation. To mitigate the performance and manufacturing cost of 3D NoCs, inhomogeneous architectures have emerged to combine 2D and 3D routers in 3D NoCs producing lower area and energy consumption while maintaining the performance of homogeneous 3D NoCs. Due to the limited number of vertical links, application mapping on inhomogeneous 3D NoCs can be complex. However, application mapping has a great impact on the performance and energy consumption of NoCs. This paper presents an energy and performance aware application mapping algorithm for inhomogeneous 3D NoCs. The algorithm has been evaluated with various realistic traffic patterns and compared with existing mapping algorithms. Experimental results show NoCs mapped with the proposed algorithm have lower energy consumption and significant reduction in packet delays compared to the existing algorithms and comparable average packet latency with Branch-and-Bound

    Doctor of Philosophy

    Get PDF
    dissertationPortable electronic devices will be limited to available energy of existing battery chemistries for the foreseeable future. However, system-on-chips (SoCs) used in these devices are under a demand to offer more functionality and increased battery life. A difficult problem in SoC design is providing energy-efficient communication between its components while maintaining the required performance. This dissertation introduces a novel energy-efficient network-on-chip (NoC) communication architecture. A NoC is used within complex SoCs due it its superior performance, energy usage, modularity, and scalability over traditional bus and point-to-point methods of connecting SoC components. This is the first academic research that combines asynchronous NoC circuits, a focus on energy-efficient design, and a software framework to customize a NoC for a particular SoC. Its key contribution is demonstrating that a simple, asynchronous NoC concept is a good match for low-power devices, and is a fruitful area for additional investigation. The proposed NoC is energy-efficient in several ways: simple switch and arbitration logic, low port radix, latch-based router buffering, a topology with the minimum number of 3-port routers, and the asynchronous advantages of zero dynamic power consumption while idle and the lack of a clock tree. The tool framework developed for this work uses novel methods to optimize the topology and router oorplan based on simulated annealing and force-directed movement. It studies link pipelining techniques that yield improved throughput in an energy-efficient manner. A simulator is automatically generated for each customized NoC, and its traffic generators use a self-similar message distribution, as opposed to Poisson, to better match application behavior. Compared to a conventional synchronous NoC, this design is superior by achieving comparable message latency with half the energy

    Polymorphic computing abstraction for heterogeneous architectures

    Get PDF
    Integration of multiple computing paradigms onto system on chip (SoC) has pushed the boundaries of design space exploration for hardware architectures and computing system software stack. The heterogeneity of computing styles in SoC has created a new class of architectures referred to as Heterogeneous Architectures. Novel applications developed to exploit the different computing styles are user centric for embedded SoC. Software and hardware designers are faced with several challenges to harness the full potential of heterogeneous architectures. Applications have to execute on more than one compute style to increase overall SoC resource utilization. The implication of such an abstraction is that application threads need to be polymorphic. Operating system layer is thus faced with the problem of scheduling polymorphic threads. Resource allocation is also an important problem to be dealt by the OS. Morphism evolution of application threads is constrained by the availability of heterogeneous computing resources. Traditional design optimization goals such as computational power and lower energy per computation are inadequate to satisfy user centric application resource needs. Resource allocation decisions at application layer need to permeate to the architectural layer to avoid conflicting demands which may affect energy-delay characteristics of application threads. We propose Polymorphic computing abstraction as a unified computing model for heterogeneous architectures to address the above issues. Simulation environment for polymorphic applications is developed and evaluated under various scheduling strategies to determine the effectiveness of polymorphism abstraction on resource allocation. User satisfaction model is also developed to complement polymorphism and used for optimization of resource utilization at application and network layer of embedded systems

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    Energy consumption in networks on chip : efficiency and scaling

    Get PDF
    Computer architecture design is in a new era where performance is increased by replicating processing cores on a chip rather than making CPUs larger and faster. This design strategy is motivated by the superior energy efficiency of the multi-core architecture compared to the traditional monolithic CPU. If the trend continues as expected, the number of cores on a chip is predicted to grow exponentially over time as the density of transistors on a die increases. A major challenge to the efficiency of multi-core chips is the energy used for communication among cores over a Network on Chip (NoC). As the number of cores increases, this energy also increases, imposing serious constraints on design and performance of both applications and architectures. Therefore, understanding the impact of different design choices on NoC power and energy consumption is crucial to the success of the multi- and many-core designs. This dissertation proposes methods for modeling and optimizing energy consumption in multi- and many-core chips, with special focus on the energy used for communication on the NoC. We present a number of tools and models to optimize energy consumption and model its scaling behavior as the number of cores increases. We use synthetic traffic patterns and full system simulations to test and validate our methods. Finally, we take a step back and look at the evolution of computer hardware in the last 40 years and, using a scaling theory from biology, present a predictive theory for power-performance scaling in microprocessor systems

    A survey on scheduling and mapping techniques in 3D Network-on-chip

    Full text link
    Network-on-Chips (NoCs) have been widely employed in the design of multiprocessor system-on-chips (MPSoCs) as a scalable communication solution. NoCs enable communications between on-chip Intellectual Property (IP) cores and allow those cores to achieve higher performance by outsourcing their communication tasks. Mapping and Scheduling methodologies are key elements in assigning application tasks, allocating the tasks to the IPs, and organising communication among them to achieve some specified objectives. The goal of this paper is to present a detailed state-of-the-art of research in the field of mapping and scheduling of applications on 3D NoC, classifying the works based on several dimensions and giving some potential research directions

    Towards Optimal Application Mapping for Energy-Efficient Many-Core Platforms

    Get PDF
    Siirretty Doriast

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF
    • …
    corecore