73 research outputs found

    Beating the channel capacity limit for linear photonic superdense coding

    Full text link
    Dense coding is arguably the protocol that launched the field of quantum communication. Today, however, more than a decade after its initial experimental realization, the channel capacity remains fundamentally limited as conceived for photons using linear elements. Bob can only send to Alice three of four potential messages owing to the impossibility of carrying out the deterministic discrimination of all four Bell states with linear optics, reducing the attainable channel capacity from 2 to log_2 3 \approx 1.585 bits. However, entanglement in an extra degree of freedom enables the complete and deterministic discrimination of all Bell states. Using pairs of photons simultaneously entangled in spin and orbital angular momentum, we demonstrate the quantum advantage of the ancillary entanglement. In particular, we describe a dense-coding experiment with the largest reported channel capacity and, to our knowledge, the first to break the conventional linear-optics threshold. Our encoding is suited for quantum communication without alignment and satellite communication.Comment: Letter: 6 pages, 4 figures. Supplementary Information: 4 pages, 1 figur

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationCommunication surpasses computation as the power and performance bottleneck in forthcoming exascale processors. Scaling has made transistors cheap, but on-chip wires have grown more expensive, both in terms of latency as well as energy. Therefore, the need for low energy, high performance interconnects is highly pronounced, especially for long distance communication. In this work, we examine two aspects of the global signaling problem. The first part of the thesis focuses on a high bandwidth asynchronous signaling protocol for long distance communication. Asynchrony among intellectual property (IP) cores on a chip has become necessary in a System on Chip (SoC) environment. Traditional asynchronous handshaking protocol suffers from loss of throughput due to the added latency of sending the acknowledge signal back to the sender. We demonstrate a method that supports end-to-end communication across links with arbitrarily large latency, without limiting the bandwidth, so long as line variation can be reliably controlled. We also evaluate the energy and latency improvements as a result of the design choices made available by this protocol. The use of transmission lines as a physical interconnect medium shows promise for deep submicron technologies. In our evaluations, we notice a lower energy footprint, as well as vastly reduced wire latency for transmission line interconnects. We approach this problem from two sides. Using field solvers, we investigate the physical design choices to determine the optimal way to implement these lines for a given back-end-of-line (BEOL) stack. We also approach the problem from a system designer's viewpoint, looking at ways to optimize the lines for different performance targets. This work analyzes the advantages and pitfalls of implementing asynchronous channel protocols for communication over long distances. Finally, the innovations resulting from this work are applied to a network-on-chip design example and the resulting power-performance benefits are reported

    Crosstalk Suppression for Fault-tolerant Quantum Error Correction with Trapped Ions

    Get PDF
    Physical qubits in experimental quantum information processors are inevitably exposed to different sources of noise and imperfections, which lead to errors that typically accumulate hindering our ability to perform long computations reliably. Progress towards scalable and robust quantum computation relies on exploiting quantum error correction (QEC) to actively battle these undesired effects. In this work, we present a comprehensive study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams. This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits. We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level. Finally, we study the impact of residual crosstalk errors on the performance of fault-tolerant QEC numerically, identifying the experimental target values that need to be achieved in near-term trapped-ion experiments to reach the break-even point for beneficial QEC with low-distance topological codes.Comment: 30 pages, 13 figures, 1 tabl

    A Hybrid voice/text electronic mail system: an application of the integrated services digital network

    Get PDF
    The objective of this thesis is to present a useful application for the Integrated Services Digital Network (ISDN) that is expected to one day replace the analog phone system in use today. ISDN itself and its continuing evolution are detailed. The system developed as a part of this thesis involved the creation of an inexpensive phone terminal that can serve as an ISDN terminal and also as a bridge to a Local Area Network (LAN). The phone terminal provides a hybrid electronic mail system that allows the attachment of speech to text within a message. Messages created with this phone terminal could theoretically be sent locally using the LAN interface and globally using ISDN to other users with either phone terminals or multimedia personal computers. For this project, the two phone terminals created were interconnected via an Ethernet and using an 80486 PC to act as a Central Office System. This Central Office System provides speech/message storage for the phone terminals. It makes use of speech compression techniques to minimize the storage requirements. The speech compression techniques used as well as the field of speech coding in general are discussed
    • …
    corecore