2,102 research outputs found

    FireFly Mosaic: A Vision-Enabled Wireless Sensor Networking System

    Full text link
    Abstract — With the advent of CMOS cameras, it is now possible to make compact, cheap and low-power image sensors capable of on-board image processing. These embedded vision sensors provide a rich new sensing modality enabling new classes of wireless sensor networking applications. In order to build these applications, system designers need to overcome challanges associated with limited bandwith, limited power, group coordination and fusing of multiple camera views with various other sensory inputs. Real-time properties must be upheld if multiple vision sensors are to process data, com-municate with each other and make a group decision before the measured environmental feature changes. In this paper, we present FireFly Mosaic, a wireless sensor network image processing framework with operating system, networking and image processing primitives that assist in the development of distributed vision-sensing tasks. Each FireFly Mosaic wireless camera consists of a FireFly [1] node coupled with a CMUcam3 [2] embedded vision processor. The FireFly nodes run the Nano-RK [3] real-time operating system and communicate using the RT-Link [4] collision-free TDMA link protocol. Using FireFly Mosaic, we demonstrate an assisted living application capable of fusing multiple cameras with overlapping views to discover and monitor daily activities in a home. Using this application, we show how an integrated platform with support for time synchronization, a collision-free TDMA link layer, an underlying RTOS and an interface to an embedded vision sensor provides a stable framework for distributed real-time vision processing. To the best of our knowledge, this is the first wireless sensor networking system to integrate multiple coordinating cameras performing local processing. I

    NASA Tech Briefs, September 2008

    Get PDF
    Topics covered include: Nanotip Carpets as Antireflection Surfaces; Nano-Engineered Catalysts for Direct Methanol Fuel Cells; Capillography of Mats of Nanofibers; Directed Growth of Carbon Nanotubes Across Gaps; High-Voltage, Asymmetric-Waveform Generator; Magic-T Junction Using Microstrip/Slotline Transitions; On-Wafer Measurement of a Silicon-Based CMOS VCO at 324 GHz; Group-III Nitride Field Emitters; HEMT Amplifiers and Equipment for their On-Wafer Testing; Thermal Spray Formation of Polymer Coatings; Improved Gas Filling and Sealing of an HC-PCF; Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions; Nematic Cells for Digital Light Deflection; Improved Silica Aerogel Composite Materials; Microgravity, Mesh-Crawling Legged Robots; Advanced Active-Magnetic-Bearing Thrust- Measurement System; Thermally Actuated Hydraulic Pumps; A New, Highly Improved Two-Cycle Engine; Flexible Structural-Health-Monitoring Sheets; Alignment Pins for Assembling and Disassembling Structures; Purifying Nucleic Acids from Samples of Extremely Low Biomass; Adjustable-Viewing-Angle Endoscopic Tool for Skull Base and Brain Surgery; UV-Resistant Non-Spore-Forming Bacteria From Spacecraft-Assembly Facilities; Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy; Simplified Modeling of Oxidation of Hydrocarbons; Near-Field Spectroscopy with Nanoparticles Deposited by AFM; Light Collimator and Monitor for a Spectroradiometer; Hyperspectral Fluorescence and Reflectance Imaging Instrument; Improving the Optical Quality Factor of the WGM Resonator; Ultra-Stable Beacon Source for Laboratory Testing of Optical Tracking; Transmissive Diffractive Optical Element Solar Concentrators; Delaying Trains of Short Light Pulses in WGM Resonators; Toward Better Modeling of Supercritical Turbulent Mixing; JPEG 2000 Encoding with Perceptual Distortion Control; Intelligent Integrated Health Management for a System of Systems; Delay Banking for Managing Air Traffic; and Spline-Based Smoothing of Airfoil Curvatures

    Re-compression Based JPEG Forgery Detection and Localization with Optimal Reconstruction

    Get PDF
    In today’s media–saturated society, digital images act as the primary carrier for majority of information that flows around us. However, because of the advent of highly sophisticated easy–to–use image processing tools, modifying images has become easy. Joint Photographic Experts Group (JPEG) is the most widely used format, prevalent today as a world–wide standard, for compression and storage of digital images. Almost all present–day digital cameras use the JPEG format for image acquisition and storage, due to its efficient compression features and optimal space requirement. In this propose work we aim to detect malicious tampering of JPEG images, and subsequently reconstruct the forged image optimally. We deal with lossy JPEG image format in this paper, which is more widely adopted compared to its lossless counter–part. The proposed technique is capable of detecting single as well as multiple forged regions in a JPEG image. We aim to achieve optimal reconstruction since the widely used JPEG being a lossy technique, under no condition would allow 100% reconstruction. The proposed reconstruction is optimal in the sense that we aim to obtain a form of the image, as close to its original form as possible, apart from eliminating the effects of forgery from the image. In this work, we exploit the inherent characteristics of JPEG compression and re–compression, for forgery detection and reconstruction of JPEG images. To prove the efficiency of our proposed technique we compare it with the other JPEG forensic techniques and using quality metric measures we assess the visual quality of the reconstructed image

    A Semantic-Based Middleware for Multimedia Collaborative Applications

    Get PDF
    The Internet growth and the performance increase of desktop computers have enabled large-scale distributed multimedia applications. They are expected to grow in demand and services and their traffic volume will dominate. Real-time delivery, scalability, heterogeneity are some requirements of these applications that have motivated a revision of the traditional Internet services, the operating systems structures, and the software systems for supporting application development. This work proposes a Java-based lightweight middleware for the development of large-scale multimedia applications. The middleware offers four services for multimedia applications. First, it provides two scalable lightweight protocols for floor control. One follows a centralized model that easily integrates with centralized resources such as a shared too], and the other is a distributed protocol targeted to distributed resources such as audio. Scalability is achieved by periodically multicasting a heartbeat that conveys state information used by clients to request the resource via temporary TCP connections. Second, it supports intra- and inter-stream synchronization algorithms and policies. We introduce the concept of virtual observer, which perceives the session as being in the same room with a sender. We avoid the need for globally synchronized clocks by introducing the concept of user\u27s multimedia presence, which defines a new manner for combining streams coming from multiple sites. It includes a novel algorithm for estimation and removal of clock skew. In addition, it supports event-driven asynchronous message reception, quality of service measures, and traffic rate control. Finally, the middleware provides support for data sharing via a resilient and scalable protocol for transmission of images that can dynamically change in content and size. The effectiveness of the middleware components is shown with the implementation of Odust, a prototypical sharing tool application built on top of the middleware

    Mitigating systematic error in topographic models for geomorphic change detection: Accuracy, precision and considerations beyond off‐nadir imagery

    Get PDF
    Unmanned aerial vehicles (UAVs) and structure-from-motion photogrammetry enable detailed quantification of geomorphic change. However, rigorous precision-based change detection can be compromised by survey accuracy problems producing systematic topographic error (e.g. 'doming'), with error magnitudes greatly exceeding precision estimates. Here, we assess survey sensitivity to systematic error, directly correcting topographic data so that error magnitudes align more closely with precision estimates. By simulating conventional grid-style photogrammetric aerial surveys, we quantify the underlying relationships between survey accuracy, camera model parameters, camera inclination, tie point matching precision and topographic relief, and demonstrate a relative insensitivity to image overlap. We show that a current doming-mitigation strategy of using a gently inclined ( 0 center dot 3 m, representing accuracy issues an order of magnitude greater than precision-based error estimates. For higher-relief topography, and for nadir-imaging surveys of the lower-relief topography, systematic error was <0 center dot 09 m. Modelling and subtracting the systematic error directly from the topographic data successfully reduced error magnitudes to values consistent with twice the estimated precision. Thus, topographic correction can provide a more robust approach to uncertainty-based detection of event-scale geomorphic change than designing surveys with small off-nadir camera inclinations and, furthermore, can substantially reduce ground control requirements. (c) 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Lt
    corecore