10,158 research outputs found

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform

    Energy for Development: The Potential Role of Renewable Energy in Meeting the Millennium Development Goals

    Get PDF
    This report identifies renewable energy options that are currently in wide use in some regions and that are now ready for large-scale introduction in many areas of the developing world. Through 26 case studies, the report cites biogas, small hydro, solar, wind, ethanol, and biodiesel, among other technologies, as viable options for poverty alleviation in developing countries.As their cost has declined and their reliability has improved, renewable energy technologies have often emerged as more affordable and practical means of providing essential energy services. Although the strongest renewable energy growth has been in grid-connected power systems and liquid fuels for transportation, several technologies are well-suited to providing modern energy services for low-income people. Scaling up a broad portfolio of renewable energy options can make a major contribution to achieving the Millennium Development Goals, concludes the report.The creation of REN 21 was sponsored by the German Federal Ministry for Economic Cooperation and Development and the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. Formally established in Copenhagen in June 2005, REN 21 is now supported by a steering committee of 11 governments, five intergovernmental organizations, five non-governmental organizations, and several regional, local and private organizations

    Powering a Biosensor Using Wearable Thermoelectric Technology

    Get PDF
    Wearable medical devices such as insulin pumps, glucose monitors, hearing aids, and electrocardiograms provide necessary medical aid and monitoring to millions of users worldwide. These battery powered devices require battery replacement and frequent charging that reduces the freedom and peace of mind of users. Additionally, the significant portion of the world without access to electricity is unable to use these medical devices as they have no means to power them constantly. Wearable thermoelectric power generation aims to charge these medical device batteries without a need for grid power. Our team has developing a wristband prototype that uses body heat, ambient air, and heat sinks to create a temperature difference across thermoelectric modules thus generating ultra-low voltage electrical power. A boost converter is implemented to boost this voltage to the level required by medical device batteries. Our goal was to use this generated power to charge medical device batteries off-the-grid, increasing medical device user freedom and allowing medical device access to those without electricity. We successfully constructed a wearable prototype that generates the voltage required by an electrocardiogram battery; however, further thermoelectric module and heat dissipation optimization is necessary to generate sufficient current to charge the battery

    Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia

    Get PDF
    This study explored the feasibility of decentralized gasification of oil palm biomass in Indonesia to relieve its over-dependence on fossil fuel-based power generation and facilitate the electrification of its rural areas. The techno-feasibility of the gasification of oil palm biomass was first evaluated by reviewing existing literature. Subsequently, two scenarios (V1 and V2, and M1 and M2) were proposed regarding the use cases of the village and mill, respectively. The capacity of the gasification systems in the V1 and M1 scenarios are determined by the total amount of oil palm biomass available in the village and mill, respectively. The capacity of the gasification systems in the V2 and M2 scenarios is determined by the respective electricity demand of the village and mill. The global warming impact and economic feasibility (net present value (NPV) and levelized cost of electricity (LCOE)) of the proposed systems were compared with that of the current practices (diesel generator for the village use case and biomass boiler combustion for the mill use case) using life cycle assessment (LCA) and cost-benefit analysis (CBA). Under the current daily demand per household (0.4 kWh), deploying the V2 system in 104 villages with 500 households each could save up to 17.9 thousand tons of CO2-eq per year compared to the current diesel-based practice. If the electricity could be fed into the national grid, the M1 system with 100% capacity factor could provide yearly GHG emissions mitigation of 5.8 × 104 ton CO2-eq, relative to the current boiler combustion-based reference scenario. M1 had a positive mean NPV if the electricity could be fed into the national grid, while M2 had a positive mean NPV at the biochar price of 500 USD/ton. Under the current electricity tariff (ET) (0.11 kWh) and the biochar price of 2650 USD/ton, daily household demands of 2 and 1.8 kWh were required to reach the break-even point of the mean NPV for the V2 system for the cases of 300 and 500 households, respectively. The average LCOE of V2 is approximately one-fourth that of the reference scenario, while the average LCOE of V1 is larger than that of the reference scenario. The average LCOE of M1 decreased to around 0.06 USD/kWh for the case of a 100% capacity factor. Sensitivity analysis showed that the capital cost of gasification system and its overall electrical efficiency had the most significant effects on the NPV. Finally, practical system deployment was discussed, with consideration of policy formulation and fiscal incentives

    Harnessing Untapped Biomass Potential Worldwide

    Get PDF

    Free Energy Generation using Neodymium Magnets: An Off-Grid Sustainable Energy Solution for Sub-Saharan Africa

    Get PDF
    Energy is pivotal to almost all of the challenges and opportunities in sub-Saharan Africa. However, the grid-based power generation capacity is grossly insufficient and unreliable to meet the increasingly growing energy demands in the region. Low incomes and exorbitant cost of energy make energy unaffordable for citizens, despite the availability of renewable resources. Low-income countries can readily harness the cost-effectiveness and the availability advantages offered by free energy option to meet the continuously growing energy demand in the region, without any adverse effect on the environment. In this paper, we designed and developed an affordable neodymium-based free energy generator that operates continuously without depending on any external source. The repulsive force between the neodymium magnets produce a torque which serves as a prime mover for rotor blades. The energy generated is transferred to a charge controller connected to the battery bank. The battery supplies the inverter with a direct current (DC) input voltage for electricity generation in alternating current (AC) form. The generated electrical power is distributed to consumers. The results of prototype testing shows that this energy option is affordable and it is not subject to climatic conditions. Therefore, this alternative energy source is a potential off-grid solution to the energy challenge in sub-Saharan Africa

    Energy Power, Digital Infrastructure and Elearning Platforms: Afrrican Experience.

    Get PDF
    Information and communication technologies are one of the most pervasive technologies in the world, second only to 'human intelligence' or the human brain. Thus, understanding the factors that determine the diffusion of new technologies across african countries is important to understanding the process of economic development. And whereas, energy is linked with the capacity to perform, the rate at which energy is consumed for the acceleration of the pace of socio-economic activities is regarded as power. Consequently, it will be obvious that the magnitude of the standard of living in any society; the growth and development of such an economy; and its ability to affect the course of events(such as ICT revolution)will be a function of the extent to which its energy(power) resources are developed and utilised. This paper therefore argued for the need to provide assistance in reducing vulnerability and building the capacity of african countries to more widely reap the benefits of the clean development mechanism in areas such as the development of cleaner and renewable energies. Inevitably, this is the critical condition for the sustainability of the emergent e-learning platforms and digital networks in africa.ICT, learning, elearning, development, energy, power, information, communication, solar, electricity, wind, governance, africa, electronics, telecommunications, internet, digital, satellite, renewable energy, gas turbine, power plants, bandwidth, coal, hydro, biomass, steam, transmission, distribution, utilisation
    corecore