70,599 research outputs found

    Noise correlation-induced splitting of Kramers' escape rate from a metastable state

    Full text link
    A correlation between two noise processes driving the thermally activated particles in a symmetric triple well potential, may cause a symmetry breaking and a difference in relative stability of the two side wells with respect to the middle one. This leads to an asymmetric localization of population and splitting of Kramers' rate of escape from the middle well, ensuring a preferential distribution of the products in the course of a parallel reaction

    Randomized Dimension Reduction on Massive Data

    Full text link
    Scalability of statistical estimators is of increasing importance in modern applications and dimension reduction is often used to extract relevant information from data. A variety of popular dimension reduction approaches can be framed as symmetric generalized eigendecomposition problems. In this paper we outline how taking into account the low rank structure assumption implicit in these dimension reduction approaches provides both computational and statistical advantages. We adapt recent randomized low-rank approximation algorithms to provide efficient solutions to three dimension reduction methods: Principal Component Analysis (PCA), Sliced Inverse Regression (SIR), and Localized Sliced Inverse Regression (LSIR). A key observation in this paper is that randomization serves a dual role, improving both computational and statistical performance. This point is highlighted in our experiments on real and simulated data.Comment: 31 pages, 6 figures, Key Words:dimension reduction, generalized eigendecompositon, low-rank, supervised, inverse regression, random projections, randomized algorithms, Krylov subspace method

    Boolean functions: noise stability, non-interactive correlation distillation, and mutual information

    Full text link
    Let TÏ”T_{\epsilon} be the noise operator acting on Boolean functions f:{0,1}n→{0,1}f:\{0, 1\}^n\to \{0, 1\}, where ϔ∈[0,1/2]\epsilon\in[0, 1/2] is the noise parameter. Given α>1\alpha>1 and fixed mean Ef\mathbb{E} f, which Boolean function ff has the largest α\alpha-th moment E(TÏ”f)α\mathbb{E}(T_\epsilon f)^\alpha? This question has close connections with noise stability of Boolean functions, the problem of non-interactive correlation distillation, and Courtade-Kumar's conjecture on the most informative Boolean function. In this paper, we characterize maximizers in some extremal settings, such as low noise (Ï”=Ï”(n)\epsilon=\epsilon(n) is close to 0), high noise (Ï”=Ï”(n)\epsilon=\epsilon(n) is close to 1/2), as well as when α=α(n)\alpha=\alpha(n) is large. Analogous results are also established in more general contexts, such as Boolean functions defined on discrete torus (Z/pZ)n(\mathbb{Z}/p\mathbb{Z})^n and the problem of noise stability in a tree model.Comment: Corrections of some inaccuracie

    Gaussian Bounds for Noise Correlation of Functions

    Get PDF
    In this paper we derive tight bounds on the expected value of products of {\em low influence} functions defined on correlated probability spaces. The proofs are based on extending Fourier theory to an arbitrary number of correlated probability spaces, on a generalization of an invariance principle recently obtained with O'Donnell and Oleszkiewicz for multilinear polynomials with low influences and bounded degree and on properties of multi-dimensional Gaussian distributions. The results derived here have a number of applications to the theory of social choice in economics, to hardness of approximation in computer science and to additive combinatorics problems.Comment: Typos and references correcte

    Nonclassical statistics of intracavity coupled χ(2)\chi^{(2)} waveguides: the quantum optical dimer

    Get PDF
    A model is proposed where two χ(2)\chi^{(2)} nonlinear waveguides are contained in a cavity suited for second-harmonic generation. The evanescent wave coupling between the waveguides is considered as weak, and the interplay between this coupling and the nonlinear interaction within the waveguides gives rise to quantum violations of the classical limit. These violations are particularly strong when two instabilities are competing, where twin-beam behavior is found as almost complete noise suppression in the difference of the fundamental intensities. Moreover, close to bistable transitions perfect twin-beam correlations are seen in the sum of the fundamental intensities, and also the self-pulsing instability as well as the transition from symmetric to asymmetric states display nonclassical twin-beam correlations of both fundamental and second-harmonic intensities. The results are based on the full quantum Langevin equations derived from the Hamiltonian and including cavity damping effects. The intensity correlations of the output fields are calculated semi-analytically using a linearized version of the Langevin equations derived through the positive-P representation. Confirmation of the analytical results are obtained by numerical simulations of the nonlinear Langevin equations derived using the truncated Wigner representation.Comment: 15 pages, 8 figures, submitted to Phys. Rev.

    On The Probability of a Rational Outcome for Generalized Social Welfare Functions on Three Alternatives

    Get PDF
    In [G. Kalai, A Fourier-theoretic Perspective on the Condorcet Paradox and Arrow's Theorem, Adv. in Appl. Math. 29(3) (2002), pp. 412--426], Kalai investigated the probability of a rational outcome for a generalized social welfare function (GSWF) on three alternatives, when the individual preferences are uniform and independent. In this paper we generalize Kalai's results to a broader class of distributions of the individual preferences, and obtain new lower bounds on the probability of a rational outcome in several classes of GSWFs. In particular, we show that if the GSWF is monotone and balanced and the distribution of the preferences is uniform, then the probability of a rational outcome is at least 3/4, proving a conjecture raised by Kalai. The tools used in the paper are analytic: the Fourier-Walsh expansion of Boolean functions on the discrete cube, properties of the Bonamie-Beckner noise operator, and the FKG inequality.Comment: 23 pages, 1 figur

    Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Get PDF
    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsi- cally generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynami- cal regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations, for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons
    • 

    corecore