167 research outputs found

    Successive Interference Cancellation for Bandlimited Channels with Direct Detection

    Full text link
    Oversampling increases information rates for bandlimited channels with direct detection, but joint detection and decoding (JDD) is often too complex to implement. Two receiver structures are studied to reduce complexity: separate detection and decoding (SDD) and successive interference cancellation (SIC) with multi-level coding. For bipolar modulation, frequency-domain raised-cosine pulse shaping, and fiber-optic channels with chromatic dispersion, SIC achieves rates close to those of JDD, thereby attaining significant energy gains over SDD and classic intensity modulation. Gibbs sampling further reduces the detector complexity and achieves rates close to those of the forward-backward algorithm at low to intermediate signal-to-noise ratio (SNR) but stalls at high SNR. Simulations with polar codes and higher-order modulation confirm the predicted rate and energy gains.Comment: Submitted to IEEE Journal of Lightwave Technology on December 15, 2022; Resubmitted to IEEE Transactions on Communications on September 9, 2023

    Novel reduced-state BCJR algorithms

    Get PDF

    On the Universality of Spatially Coupled LDPC Codes over Intersymbol Interference Channels

    Get PDF
    In this paper, we derive the exact input/output transfer functions of the optimal a-posteriori probability channel detector for a general ISI channel with erasures. Considering three channel impulse responses of different memory as an example, we compute the BP and MAP thresholds for regular spatially coupled LDPC codes with joint iterative detection and decoding. When we compare the results with the thresholds of ISI channels with Gaussian noise we observe an apparent inconsistency, i.e., a channel which performs better with erasures performs worse with AWGN. We show that this anomaly can be resolved by looking at the thresholds from an entropy perspective. We finally show that with spatial coupling we can achieve the symmetric information rates of different ISI channels using the same code

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation addresses several key challenges in multiple-antenna communications, including information-theoretical analysis of channel capacity, capacity-achieving signaling design, and practical statistical detection algorithms. The first part of the thesis studies the capacity limits of multiple-input multiple-output (MIMO) multiple access channel (MAC) via virtual representation (VR) model. The VR model captures the physical scattering environment via channel gains in the angular domain, and hence is a realistic MIMO channel model that includes many existing channel models as special cases. This study provides analytical characterization of the optimal input distribution that achieves the sum-capacity of MAC-VR. It also investigates the optimality of beamforming, which is a simple scalar coding strategy desirable in practice. For temporally correlated channels, beamforming codebook designs are proposed that can efficiently exploit channel correlation. The second part of the thesis focuses on statistical detection for time-varying frequency-selective channels. The proposed statistical detectors are developed based on Markov Chain Monte Carlo (MCMC) techniques. The complexity of such detectors grows linearly in system dimensions, which renders them applicable to inter-symbol-interference (ISI) channels with long delay spread, for which the traditional trellis-based detectors fail due to prohibitive complexity. The proposed MCMC detectors provide substantial gain over the de facto turbo minimum-mean square-error (MMSE) detector for both synthetic channel and underwater acoustic (UWA) channels. The effectiveness of the proposed MCMC detectors is successfully validated through experimental data collected from naval at-sea experiments

    Markov Chain Monte Carlo detection for underwater acoustic channels

    Full text link

    Doctor of Philosophy

    Get PDF
    dissertationMultiple-input and multiple-output (MIMO) technique has emerged as a key feature for future generations of wireless communication systems. It increases the channel capacity proportionate to the minimum number of transmit and receive antennas. This dissertation addresses the receiver design for high-rate MIMO communications in at fading environments. The emphasis of the thesis is on the cases where channel state information (CSI) is not available and thus, clever channel estimation algorithms have to be developed to bene t from the maximum available channel capacity. The thesis makes four distinct novel contributions. First, we note that the conventional MCMC-MIMO detector presented in the prior work may deteriorate as SNR increases. We suggest and show through computer simulations that this problem to a great extent can be solved by initializing the MCMC detector with regulated states which are found through linear detectors. We also introduce the novel concept of staged-MCMC in a turbo receiver, where we start the detection process at a lower complexity and increase complexity only if the data could not be correctly detected in the present stage of data detection. Second, we note that in high-rate MIMO communications, joint data detection and channel estimation poses new challenges when a turbo loop is used to improve the quality of the estimated channel and the detected data. Erroneous detected data may propagate in the turbo loop and, thus, degrade the performance of the receiver signi cantly. This is referred to as error propagation. We propose a novel receiver that decorrelates channel estimation and the detected data to avoid the detrimental e ect of error propagation. Third, the dissertation studies joint channel estimation and MIMO detection over a continuously time-varying channel and proposes a new dual-layer channel estimator to overcome the complexity of optimal channel estimators. The proposed dual-layer channel estimator reduces the complexity of the MIMO detector with optimal channel estimator by an order of magnitude at a cost of a negligible performance degradation, on the order of 0.1 to 0.2 dB. The fourth contribution of this dissertation is to note that the Wiener ltering techniques that are discussed in this dissertation and elsewhere in the literature assume that channel (time-varying) statistics are available. We propose a new method that estimates such statistics using the coarse channel estimates obtained through pilot symbols. The dissertation also makes an additional contribution revealing di erences between the MCMC-MIMO and LMMSE-MIMO detectors. We nd that under the realistic condition where CSI has to be estimated, hence the available channel estimate will be noisy, the MCMC-MIMO detector outperforms the LMMSE-MIMO detector with a signi cant margin

    Doctor of Philosophy

    Get PDF
    dissertationThe continuous growth of wireless communication use has largely exhausted the limited spectrum available. Methods to improve spectral efficiency are in high demand and will continue to be for the foreseeable future. Several technologies have the potential to make large improvements to spectral efficiency and the total capacity of networks including massive multiple-input multiple-output (MIMO), cognitive radio, and spatial-multiplexing MIMO. Of these, spatial-multiplexing MIMO has the largest near-term potential as it has already been adopted in the WiFi, WiMAX, and LTE standards. Although transmitting independent MIMO streams is cheap and easy, with a mere linear increase in cost with streams, receiving MIMO is difficult since the optimal methods have exponentially increasing cost and power consumption. Suboptimal MIMO detectors such as K-Best have a drastically reduced complexity compared to optimal methods but still have an undesirable exponentially increasing cost with data-rate. The Markov Chain Monte Carlo (MCMC) detector has been proposed as a near-optimal method with polynomial cost, but it has a history of unusual performance issues which have hindered its adoption. In this dissertation, we introduce a revised derivation of the bitwise MCMC MIMO detector. The new approach resolves the previously reported high SNR stalling problem of MCMC without the need for hybridization with another detector method or adding heuristic temperature scaling terms. Another common problem with MCMC algorithms is an unknown convergence time making predictable fixed-length implementations problematic. When an insufficient number of iterations is used on a slowly converging example, the output LLRs can be unstable and overconfident, therefore, we develop a method to identify rare, slowly converging runs and mitigate their degrading effects on the soft-output information. This improves forward-error-correcting code performance and removes a symptomatic error floor in bit-error-rates. Next, pseudo-convergence is identified with a novel way to visualize the internal behavior of the Gibbs sampler. An effective and efficient pseudo-convergence detection and escape strategy is suggested. Finally, the new excited MCMC (X-MCMC) detector is shown to have near maximum-a-posteriori (MAP) performance even with challenging, realistic, highly-correlated channels at the maximum MIMO sizes and modulation rates supported by the 802.11ac WiFi specification, 8x8 256 QAM. Further, the new excited MCMC (X-MCMC) detector is demonstrated on an 8-antenna MIMO testbed with the 802.11ac WiFi protocol, confirming its high performance. Finally, a VLSI implementation of the X-MCMC detector is presented which retains the near-optimal performance of the floating-point algorithm while having one of the lowest complexities found in the near-optimal MIMO detector literature

    Channel detection on two-dimensional magnetic recording

    Get PDF
    Two-dimensional magnetic recording (TDMR) coupled with shingled-magnetic recording (SMR) is one of next generation techniques for increasing the hard disk drive (HDD) capacity up to 10 Tbit/in2 in order to meet the growing demand of mass storage.We focus on solving the tough problems and challenges on the detection end of TDMR. Since the reader works on the overlapped tracks, which are even narrower than the read head, the channel detector works in an environment of low signal-to-noise ratio (SNR), two-dimensional (2-D) inter-symbol interference (ISI) and colored noise, therefore it requires sophisticated detection techniques to provide reliable data recovery. Given that the complexity of optimal 2-D symbol detection is exponential on the data width, we had to choose suboptimal solutions.To build our research environment, we use an innovative Voronoi grain based channel model which captures the important features of SMR, such as squeezed tracks, tilted bit cells, 2-D ISI, electronic and media noise, etc. Then we take an in-depth exploration of channel detection techniques on the TDMR channel model. Our approaches extend the conventional 1-D detection techniques, by using a joint-track equalizer to optimize the 2-D partial-response (PR) target followed by the multi-track detector (MTD) for joint detection, or using the inter-track interference (ITI) canceller to estimate and cancel the ITI from side tracks, followed by a standard BCJR detector. We used the single-track detector (STD) for pre-detecting the side tracks to lower the overall complexity. Then we use pattern-dependent noise prediction (PDNP) techniques to linearly predict the noise sample, so as to improve the detection performance under colored media noise, and especially the data dependent jitter noise. The results show that our 2-D detectors provide significant performance gains against the conventional detectors with manageable complexity
    corecore