260 research outputs found

    EC-GSM-IoT Network Synchronization with Support for Large Frequency Offsets

    Full text link
    EDGE-based EC-GSM-IoT is a promising candidate for the billion-device cellular IoT (cIoT), providing similar coverage and battery life as NB-IoT. The goal of 20 dB coverage extension compared to EDGE poses significant challenges for the initial network synchronization, which has to be performed well below the thermal noise floor, down to an SNR of -8.5 dB. We present a low-complexity synchronization algorithm supporting up to 50 kHz initial frequency offset, thus enabling the use of a low-cost +/-25 ppm oscillator. The proposed algorithm does not only fulfill the 3GPP requirements, but surpasses them by 3 dB, enabling communication with an SNR of -11.5 dB or a maximum coupling loss of up to 170.5 dB.Comment: Wireless Communications and Networking Conference (WCNC), 201

    Channel equalization and interference analysis for uplink Narrowband Internet of Things (NB-IoT)

    Get PDF
    We derive the uplink system model for In-band and Guard-band narrowband Internet of Things (NB-IoT). The results reveal that the actual channel frequency response (CFR) is not a simple Fourier transform of the channel impulse response, due to sampling rate mismatch between the NB-IoT user and Long Term Evolution (LTE) base station. Consequently, a new channel equalization algorithm is proposed based on the derived effective CFR. In addition, the interference is derived analytically to facilitate the co-existence of NB-IoT and LTE signals. This work provides an example and guidance to support network slicing and service multiplexing in the physical layer

    Low-power Physical-layer Design for LTE Based Very NarrowBand IoT (VNB - IoT) Communication

    Get PDF
    abstract: With the new age Internet of Things (IoT) revolution, there is a need to connect a wide range of devices with varying throughput and performance requirements. In this thesis, a wireless system is proposed which is targeted towards very low power, delay insensitive IoT applications with low throughput requirements. The low cost receivers for such devices will have very low complexity, consume very less power and hence will run for several years. Long Term Evolution (LTE) is a standard developed and administered by 3rd Generation Partnership Project (3GPP) for high speed wireless communications for mobile devices. As a part of Release 13, another standard called narrowband IoT (NB-IoT) was introduced by 3GPP to serve the needs of IoT applications with low throughput requirements. Working along similar lines, this thesis proposes yet another LTE based solution called very narrowband IoT (VNB-IoT), which further reduces the complexity and power consumption of the user equipment (UE) while maintaining the base station (BS) architecture as defined in NB-IoT. In the downlink operation, the transmitter of the proposed system uses the NB-IoT resource block with each subcarrier modulated with data symbols intended for a different user. On the receiver side, each UE locks to a particular subcarrier frequency instead of the entire resource block and operates as a single carrier receiver. On the uplink, the system uses a single-tone transmission as specified in the NB-IoT standard. Performance of the proposed system is analyzed in an additive white Gaussian noise (AWGN) channel followed by an analysis of the inter carrier interference (ICI). Relationship between the overall filter bandwidth and ICI is established towards the end.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Clock Error Impact on NB-IoT Radio Link Performance

    Get PDF
    3GPP has recently addressed the improvements in Random Access Network (RAN) and specified some new technologies such as enhanced Machine Type Communication (eMTC) and Narrow Band – Internet of Things (NB-IoT) in its release 13 which is also known as LTE-Advanced Pro. These new technologies are addressed mainly to focus on development and deployment of cellular IoT services. NB-IoT is less complex and easily deployable through software upgradation and is compatible to legacy cellular networks such as GSM and 4G which makes it a suitable candidate for IoT. NB-IoT will greatly support LPWAN, thus, it can be deployed for Smart cities and other fields such as smart electricity, smart agriculture, smart health services and smart homes. The NB-IoT targets for low cost device, low power consumption, relaxed delay sensitivity and easy deployment which will greatly support above mentioned fields. This thesis work studies the clock error impact on the radio link performance for up-link transmission on the NB-IoT testbed based on Cloud-RAN using Software Defined Radios (SDR) on a LTE protocol stack. The external clock error is introduced to the network and performance issues are analyzed in the radio link. The analysis indicates packet drops up to 51% in the radio link through the study of received power, packet loss, retransmissions, BLER and SINR for different MCS index. The major performance issues depicted by the analysis are packet loss up to 51% and retransmission of packets up to 128 times for lower SINR and high clock errors. Also, clock errors produce CFO up to 1.25 ppm which results in bad synchronization between UE and eNodeB

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF
    • …
    corecore