383 research outputs found

    Are carrier-to-noise algorithms equivalent in all situations?

    Get PDF
    This paper describes methods to estimate the carrier to noise ratio in GNSS application

    Are carrier-to-noise algorithms equivalent in all situations?

    Get PDF
    This paper describes methods to estimate the carrier to noise ratio in GNSS applications

    Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Get PDF
    Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Mobile Satellite (LMS) channel model [1]-[4], developed at the German Aerospace Center (DLR). The DLR LMS channel model is widely used for simulating the positioning accuracy of mobile satellite navigation receivers in urban outdoor scenarios. The main objective of this paper is to present a comprehensive analysis of some of the most promising techniques with the DLR LMS channel model in varying multipath scenarios. Four multipath mitigation techniques are chosen herein for performance comparison, namely, the narrow Early-Minus-Late (nEML), the High Resolution Correlator, the C/N0-based two stage delay tracking technique, and the Reduced Search Space Maximum Likelihood (RSSML) delay estimator. The first two techniques are the most popular and traditional ones used in nowadays GNSS receivers, whereas the later two techniques are comparatively new and are advanced techniques, recently proposed by the authors. In addition, the implementation of the RSSML is optimized here for a narrow-bandwidth receiver configuration in the sense that it now requires a significantly less number of correlators and memory than its original implementation. The simulation results show that the reduced-complexity RSSML achieves the best multipath mitigation performance in moderate-to-good carrier-to-noise density ratio with the DLR LMS channel model in varying multipath scenarios

    Development and Analysis of Advanced Techniques for GNSS Receivers

    Get PDF
    With the rapid development of digital techniques, the concept of software-defined radio (SDR) emerged which accelerates the first appearance of of the real-time GNSS software receiver at the beginning of this century, in the frame of a software receiver, this thesis mainly explores the possible improvement in parameters estimate such as frequency estimate, code delay estimate and phase estimate. In the first stage, acquisition process is focused, the theoretical mathematical expression of the cross-ambiguity function (CAF) is exploited to analyze the grid and improve the accuracy of the frequency estimate. Based on the simple equation derived from this mathematical expression of the CAF, a family of novel algorithms are proposed to refine the Doppler frequency estimate. In an ideal scenario where there is no noise and other nuisances, the frequency estimation error can be theoretically reduced to zero. On the other hand, in the presence of noise, the new algorithm almost reaches the Cramer-Rao Lower Bound (CRLB) which is derived as benchmark. For comparison, a least-square (LS) method is proposed. It is shown that the proposed solution achieves the same performance of LS, but requires a dramatically reduced computational burden. An averaging method is proposed to mitigate the influence of noise, especially when signal-to-noise ratio (SNR) is low. Finally, the influence of the grid resolution in the search space is analyzed in both time and frequency domains. In the next step, a new FLL discriminator based on energy is proposed to adapt to the changes brought by the new introduced signal modulation. This new discriminator can determine the frequency error only using the minimum period of data, it can also extend the pull-in range to nearly six times larger as the traditional arctangent discriminator. The whole derivation of the method is presented. From the comparison with traditional ATAN and another similar discriminator that is also based on energy, it is shown that the new proposed discriminator can inherit the merits of these two references, avoiding their drawbacks at the same time. Owing to the property of the new discriminator, in case of composite GNSS signals such as Galileo E1 Open Service (OS) signal, coherent combination of data and pilot channels can be adopted to improve the frequency estimate by exploiting the full transmitted power. In order to incorporate all the available information, the structure of a tracking loop with Extended Kalman Filter (EKF) is analyzed and implemented. The structure of an EKF-based software receiver is proposed including the special modules dedicated to the initialization and maintenance of the tracking loop. The EKF-based tracking architecture has been compared with a traditional one based on an FLL/PLL+DLL architecture, and the benefit of the EKF within the tracking stage has been evaluated in terms of final positioning accuracy. Further tests have been carried out to compare the Position-Velocity-Time (PVT) solution of this receiver with the one provided by two commercial receivers: a mass-market GPS module (Ublox LEA-5T) and a professional one (Septentrio PolaRx2e@). The results show that the accuracy in PVT of the software receiver can be remarkably improved if the tracking is designed with a proper EKF architecture and the performance we can achieve is even better than the one obtained by the mass market receiver, even when a simple one-shot least-squares approach is adopted for the computation of the navigation solution. Furthermore in depth, KF-based tracking loop is analyzed, a control model is derived to link the KF system and the traditional one which can provide an insight into the advantages of KF system. Finally, conclusions and main recommendations are presented

    ML estimator and hybrid beamformer for multipath and interference mitigation in GNSS receivers

    Get PDF
    This paper addresses the estimation of the code-phase(pseudorange) and the carrier-phase of the direct signal received from a direct-sequence spread-spectrum satellite transmitter. The signal is received by an antenna array in a scenario with interference and multipath propagation. These two effects are generally the limiting error sources in most high-precision positioning applications. A new estimator of the code- and carrier-phases is derived by using a simplified signal model and the maximum likelihood (ML) principle. The simplified model consists essentially of gathering all signals, except for the direct one, in a component with unknown spatial correlation. The estimator exploits the knowledge of the direction-of-arrival of the direct signal and is much simpler than other estimators derived under more detailed signal models. Moreover, we present an iterative algorithm, that is adequate for a practical implementation and explores an interesting link between the ML estimator and a hybrid beamformer. The mean squared error and bias of the new estimator are computed for a number of scenarios and compared with those of other methods. The presented estimator and the hybrid beamforming outperform the existing techniques of comparable complexity and attains, in many situations, the Cramér–Rao lower bound of the problem at hand.Peer Reviewe

    Simulation of Multi-element Antenna Systems for Navigation Applications

    Get PDF
    The application of user terminals with multiple antenna inputs for use with the global satellite navigation systems like GPS and Galileo becomes more and more attraction in last years. Multiple antennas may be spread over the user platform and provide signals required for the platform attitude estimation or may be arranged in an antenna array to be used together with array processing algorithms for improving signal reception, e.g. for multipath and interference mitigation. In order to generate signals for testing of receivers with multiple antenna inputs and corresponding receiver algorithms in a laboratory environment a unique HW signal simulation tool for wavefront simulation has been developed. The signals for a number of antenna elements in a flexible user defined geometry are first generated as digital signals in baseband and then mixed up to individual RF-outputs. The paper describes the principle function of the system and addresses some calibration issues. Measurement set-ups and results of data processing with simulated signals for different applications are shown and discussed

    Carrier-phase multipath in satellite-based positioning

    Get PDF
    [no abstract

    Collective unambiguous positioning with high-order BOC signals

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The unambiguous estimation of high-order BOC signals in harsh propagation conditions is still an open problem in the literature. This paper proposes to overcome the limitations observed in state-of-the-art unambiguous estimation techniques based on the application of existing direct positioning techniques and the exploitation of the spatial diversity introduced by arrays of antennas. In particular, the ambiguity problem is solved as a multiple-input multiple-output (MIMO) estimation problem in the position domain.Peer ReviewedPostprint (author's final draft

    GNSS Vulnerabilities and Existing Solutions:A Review of the Literature

    Get PDF
    This literature review paper focuses on existing vulnerabilities associated with global navigation satellite systems (GNSSs). With respect to the civilian/non encrypted GNSSs, they are employed for proving positioning, navigation and timing (PNT) solutions across a wide range of industries. Some of these include electric power grids, stock exchange systems, cellular communications, agriculture, unmanned aerial systems and intelligent transportation systems. In this survey paper, physical degradations, existing threats and solutions adopted in academia and industry are presented. In regards to GNSS threats, jamming and spoofing attacks as well as detection techniques adopted in the literature are surveyed and summarized. Also discussed are multipath propagation in GNSS and non line-of-sight (NLoS) detection techniques. The review also identifies and discusses open research areas and techniques which can be investigated for the purpose of enhancing the robustness of GNSS

    Robust GNSS Carrier Phase-based Position and Attitude Estimation Theory and Applications

    Get PDF
    Mención Internacional en el título de doctorNavigation information is an essential element for the functioning of robotic platforms and intelligent transportation systems. Among the existing technologies, Global Navigation Satellite Systems (GNSS) have established as the cornerstone for outdoor navigation, allowing for all-weather, all-time positioning and timing at a worldwide scale. GNSS is the generic term for referring to a constellation of satellites which transmit radio signals used primarily for ranging information. Therefore, the successful operation and deployment of prospective autonomous systems is subject to our capabilities to support GNSS in the provision of robust and precise navigational estimates. GNSS signals enable two types of ranging observations: –code pseudorange, which is a measure of the time difference between the signal’s emission and reception at the satellite and receiver, respectively, scaled by the speed of light; –carrier phase pseudorange, which measures the beat of the carrier signal and the number of accumulated full carrier cycles. While code pseudoranges provides an unambiguous measure of the distance between satellites and receiver, with a dm-level precision when disregarding atmospheric delays and clock offsets, carrier phase measurements present a much higher precision, at the cost of being ambiguous by an unknown number of integer cycles, commonly denoted as ambiguities. Thus, the maximum potential of GNSS, in terms of navigational precision, can be reach by the use of carrier phase observations which, in turn, lead to complicated estimation problems. This thesis deals with the estimation theory behind the provision of carrier phase-based precise navigation for vehicles traversing scenarios with harsh signal propagation conditions. Contributions to such a broad topic are made in three directions. First, the ultimate positioning performance is addressed, by proposing lower bounds on the signal processing realized at the receiver level and for the mixed real- and integer-valued problem related to carrier phase-based positioning. Second, multi-antenna configurations are considered for the computation of a vehicle’s orientation, introducing a new model for the joint position and attitude estimation problems and proposing new deterministic and recursive estimators based on Lie Theory. Finally, the framework of robust statistics is explored to propose new solutions to code- and carrier phase-based navigation, able to deal with outlying impulsive noises.La información de navegación es un elemental fundamental para el funcionamiento de sistemas de transporte inteligentes y plataformas robóticas. Entre las tecnologías existentes, los Sistemas Globales de Navegación por Satélite (GNSS) se han consolidado como la piedra angular para la navegación en exteriores, dando acceso a localización y sincronización temporal a una escala global, irrespectivamente de la condición meteorológica. GNSS es el término genérico que define una constelación de satélites que transmiten señales de radio, usadas primordinalmente para proporcionar información de distancia. Por lo tanto, la operatibilidad y funcionamiento de los futuros sistemas autónomos pende de nuestra capacidad para explotar GNSS y estimar soluciones de navegación robustas y precisas. Las señales GNSS permiten dos tipos de observaciones de alcance: –pseudorangos de código, que miden el tiempo transcurrido entre la emisión de las señales en los satélites y su acquisición en la tierra por parte de un receptor; –pseudorangos de fase de portadora, que miden la fase de la onda sinusoide que portan dichas señales y el número acumulado de ciclos completos. Los pseudorangos de código proporcionan una medida inequívoca de la distancia entre los satélites y el receptor, con una precisión de decímetros cuando no se tienen en cuenta los retrasos atmosféricos y los desfases del reloj. En contraposición, las observaciones de la portadora son super precisas, alcanzando el milímetro de exactidud, a expensas de ser ambiguas por un número entero y desconocido de ciclos. Por ende, el alcanzar la máxima precisión con GNSS queda condicionado al uso de las medidas de fase de la portadora, lo cual implica unos problemas de estimación de elevada complejidad. Esta tesis versa sobre la teoría de estimación relacionada con la provisión de navegación precisa basada en la fase de la portadora, especialmente para vehículos que transitan escenarios donde las señales no se propagan fácilmente, como es el caso de las ciudades. Para ello, primero se aborda la máxima efectividad del problema de localización, proponiendo cotas inferiores para el procesamiento de la señal en el receptor y para el problema de estimación mixto (es decir, cuando las incógnitas pertenecen al espacio de números reales y enteros). En segundo lugar, se consideran las configuraciones multiantena para el cálculo de la orientación de un vehículo, presentando un nuevo modelo para la estimación conjunta de posición y rumbo, y proponiendo estimadores deterministas y recursivos basados en la teoría de Lie. Por último, se explora el marco de la estadística robusta para proporcionar nuevas soluciones de navegación precisa, capaces de hacer frente a los ruidos atípicos.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José Manuel Molina López.- Secretario: Giorgi Gabriele.- Vocal: Fabio Dovi
    corecore