591 research outputs found

    Low Complexity Blind Equalization for OFDM Systems with General Constellations

    Get PDF
    This paper proposes a low-complexity algorithm for blind equalization of data in OFDM-based wireless systems with general constellations. The proposed algorithm is able to recover data even when the channel changes on a symbol-by-symbol basis, making it suitable for fast fading channels. The proposed algorithm does not require any statistical information of the channel and thus does not suffer from latency normally associated with blind methods. We also demonstrate how to reduce the complexity of the algorithm, which becomes especially low at high SNR. Specifically, we show that in the high SNR regime, the number of operations is of the order O(LN), where L is the cyclic prefix length and N is the total number of subcarriers. Simulation results confirm the favorable performance of our algorithm

    Joint data detection and channel estimation for OFDM systems

    Get PDF
    We develop new blind and semi-blind data detectors and channel estimators for orthogonal frequency-division multiplexing (OFDM) systems. Our data detectors require minimizing a complex, integer quadratic form in the data vector. The semi-blind detector uses both channel correlation and noise variance. The quadratic for the blind detector suffers from rank deficiency; for this, we give a low-complexity solution. Avoiding a computationally prohibitive exhaustive search, we solve our data detectors using sphere decoding (SD) and V-BLAST and provide simple adaptations of the SD algorithm. We consider how the blind detector performs under mismatch, generalize the basic data detectors to nonunitary constellations, and extend them to systems with pilots and virtual carriers. Simulations show that our data detectors perform well

    Subspace-Based Blind Channel Identification for Cyclic Prefix Systems Using Few Received Blocks

    Get PDF
    In this paper, a novel generalization of subspace-based blind channel identification methods in cyclic prefix (CP) systems is proposed. For the generalization, a new system parameter called repetition index is introduced whose value is unity for previously reported special cases. By choosing a repetition index larger than unity, the number of received blocks needed for blind identification is significantly reduced compared to all previously reported methods. This feature makes the method more realistic especially in wireless environments where the channel state is usually fast-varying. Given the number of received blocks available, the minimum value of repetition index is derived. Theoretical limit allows the proposed method to perform blind identification using only three received blocks in absence of noise. In practice, the number of received blocks needed to yield a satisfactory bit-error-rate (BER) performance is usually on the order of half the block size. Simulation results not only demonstrate the capability of the algorithm to perform blind identification using fewer received blocks, but also show that in some cases system performance can be improved by choosing a repetition index larger than needed. Simulation of the proposed method over time-varying channels clearly demonstrates the improvement over previously reported methods

    Blind Receiver Design for OFDM Systems Over Doubly Selective Channels

    Get PDF
    We develop blind data detectors for orthogonal frequency-division multiplexing (OFDM) systems over doubly selective channels by exploiting both frequency-domain and time-domain correlations of the received signal. We thus derive two blind data detectors: a time-domain data detector and a frequency-domain data detector. We also contribute a reduced complexity, suboptimal version of a time-domain data detector that performs robustly when the normalized Doppler rate is less than 3%. Our frequency-domain data detector and suboptimal time-domain data detector both result in integer least-squares (LS) problems. We propose the use of the V-BLAST detector and the sphere decoder. The time-domain data detector is not limited to the Doppler rates less than 3%, but cannot be posed as an integer LS problem. Our solution is to develop an iterative algorithm that starts from the suboptimal time-domain data detector output. We also propose channel estimation and prediction algorithms using a polynomial expansion model, and these estimators work with data detectors (decision-directed mode) to reduce the complexity. The estimators for the channel statistics and the noise variance are derived using the likelihood function for the data. Our blind data detectors are fairly robust against the parameter mismatch

    A Summative Comparison of Blind Channel Estimation Techniques for Orthogonal Frequency Division Multiplexing Systems

    Get PDF
    The OFDM techniquei.e. Orthogonal frequency division multiplexing has become prominent in wireless communication since its instruction in 1950’s due to its feature of combating the multipath fading and other losses. In an OFDM system, a large number of orthogonal, overlapping, narrow band subchannels or subcarriers, transmitted in parallel, divide the available transmission bandwidth. The separation of the subcarriers is theoretically optimal such that there is a very compact spectral utilization. This paper reviewed the possible approaches for blind channel estimation in the light of the improved performance in terms of speed of convergence and complexity. There were various researches which adopted the ways for channel estimation for Blind, Semi Blind and trained channel estimators and detectors. Various ways of channel estimation such as Subspace, iteration based, LMSE or MSE based (using statistical methods), SDR, Maximum likelihood approach, cyclostationarity, Redundancy and Cyclic prefix based. The paper reviewed all the above approaches in order to summarize the outcomes of approaches aimed at optimum performance for channel estimation in OFDM system

    Limiting Performance of Conventional and Widely Linear DFT-precoded-OFDM Receivers in Wideband Frequency Selective Channels

    Get PDF
    This paper describes the limiting behavior of linear and decision feedback equalizers (DFEs) in single/multiple antenna systems employing real/complex-valued modulation alphabets. The wideband frequency selective channel is modeled using a Rayleigh fading channel model with infinite number of time domain channel taps. Using this model, we show that the considered equalizers offer a fixed post signal-to-noise-ratio (post-SNR) at the equalizer output that is close to the matched filter bound (MFB). General expressions for the post-SNR are obtained for zero-forcing (ZF) based conventional receivers as well as for the case of receivers employing widely linear (WL) processing. Simulation is used to study the bit error rate (BER) performance of both MMSE and ZF based receivers. Results show that the considered receivers advantageously exploit the rich frequency selective channel to mitigate both fading and inter-symbol-interference (ISI) while offering a performance comparable to the MFB
    corecore