26 research outputs found

    Equalization Techniques of Control and Non-Payload Communication Links for Unmanned Aerial Vehicles

    Get PDF
    In the next years, several new applications involving unmanned aerial vehicles (UAVs) for public and commercial uses are envisaged. In such developments, since UAVs are expected to operate within the public airspace, a key issue is the design of reliable control and non-payload communication (CNPC) links connecting the ground control station to the UAV. At the physical layer, CNPC design must cope with time- and frequency-selectivity (so-called double selectivity) of the wireless channel, due to lowaltitude operation and flight dynamics of the UAV. In this paper, we consider the transmission of continuous phase modulated (CPM) signals for UAV CNPC links operating over doubly-selective channels. Leveraging on the Laurent representation for a CPM signal, we design a two-stage receiver: the first one is a linear time-varying (LTV) equalizer, synthesized under either the zero-forcing (ZF) or minimum mean-square error (MMSE) criterion; the second one recovers the transmitted symbols from the pseudo-symbols of the Laurent representation in a simple recursive manner. In addition to LTV-ZF and LTV-MMSE equalizers, their widely-linear versions are also developed, to take into account the possible noncircular features of the CPM signal. Moreover, relying on a basis expansion model (BEM) of the doubly-selective channel, we derive frequency-shift versions of the proposed equalizers, by discussing their complexity issues and proposing simplified implementations. Monte Carlo numerical simulations show that the proposed receiving structures are able to satisfactorily equalize the doubly-selective channel in typical UAV scenarios

    Channelformer: Attention based Neural Solution for Wireless Channel Estimation and Effective Online Training

    Get PDF

    On the Performance Analysis of Cooperative Vehicular Communication

    Get PDF
    Vehicular networking is envisioned to be a key technology area for significant growth in the coming years. Although the expectations for this emerging technology are set very high, many practical aspects remain still unsolved for a vast deployment of vehicular networks. This dissertation addresses the enabling physical layer techniques to meet the challenges in vehicular networks operating in mobile wireless environments. Considering the infrastructure-less nature of vehicular networks, we envision cooperative diversity well positioned to meet the demanding requirements of vehicular networks with their underlying distributed structure. Cooperative diversity has been proposed as a powerful means to enhance the performance of high-rate communications over wireless fading channels. It realizes spatial diversity advantages in a distributed manner where a node uses others antennas to relay its message creating a virtual antenna array. Although cooperative diversity has garnered much attention recently, it has not yet been fully explored in the context of vehicular networks considering the unique characteristics of vehicular networks, this dissertation provides an error performance analysis study of cooperative transmission schemes for various deployment and traffic scenarios. In the first part of this dissertation, we investigate the performance of a cooperative vehicle-to-vehicle (V2V) system with amplify-and-forward relaying for typical traffic scenarios under city/urban settings and a highway area. We derive pairwise error probability (PEP) expressions and demonstrate the achievable diversity gains. The effect of imperfect channel state information (CSI) is also studied through an asymptotical PEP analysis. We present Monte-Carlo simulations to confirm the analytical derivations and present the error rate performance of the vehicular scheme with perfect and imperfect-CSI. In the second part, we consider road-to-vehicle (R2V) communications in which roadside access points use cooperating vehicles as relaying terminals. Under the assumption of decode-and-forward relaying, we derive PEP expressions for single-relay and multi-relay scenarios. In the third part, we consider a cooperative multi-hop V2V system in which direct transmission is not possible and investigate its performance through the PEP derivation and diversity gain analysis. Monte-Carlo simulations are further provided to con firm the analytical derivations and provide insight into the error rate performance improvement

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participants’ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning © 2012 Acoustical Society of Americapublished_or_final_versio

    Environmental model-based time-reversal underwater communications

    Get PDF
    Advances in underwater acoustic communications require the development of methods to accurately compensate channels that are prone to severe double spreading of time-varying multipath propagation, fading and signal phase variations. Assuming the environmental information as a key issue, this work aims to improve communications performance of single-input-multiple-output transmission systems in such channels through the enhancement of their estimates used for equalization. The acoustic propagation physical parameters of the environment between the source and the receivers are considered in the process. The approach is to mitigate noise e ects in channel identi cation for Passive Time-Reversal (PTR), which is a low complexity probe-based refocusing technique to reduce time spreading and inter-symbol interference. The method Environmental-based PTR (EPTR) is proposed that, inspired by matched eld inversion, inserts physics of acoustic propagation in the channel compensation procedure through ray trace modeling and environmental focalization processing. The focalization is the process of tweaking the environmental parameters to obtain a noise-free numerical model generated channel response that best matches the observed data. The EPTR performance is tested and compared to the pulse-compressed PTR and to the regularized `1-norm PTR. The former is based on classical `2-norm channel estimation and the latter, inspired by compressive sensing, uses weighted `1-norm into the `2-norm estimation problem to obtain improved estimates of sparse channels. Successful experimental results were obtained with the proposed method for signals containing image messages transmitted at 4 kbit/s from a source to a 16-hydrophones vertical array at 890 m range during the UAN'11 experiment conducted o the coast of Trondheim (Norway). The scienti c contributions of this work are (i) the understanding of the process of employing physical modeling and environmental focalization to equalize and retrieve received messages in underwater acoustic communications, thus exploiting the sensitivity of environmental parameters in order to adapt a communications system to the scenario where it is used; and (ii) the presentation of a new PTR-based method that focuses environmental parameters to model suitable noise-free channel responses for equalization and whose real data results were successful for a set of coherent signals collected at sea. The proposed method is a step forward to a better understanding on how to insert physical knowledge of the environment for equalization in digital underwater acoustic communications

    Acoustical measurements on stages of nine U.S. concert halls

    Get PDF
    corecore