3,171 research outputs found

    LOTOSphere:software development with LOTOS

    Get PDF
    LOTOS (Language Of Temporal Ordering Specification) became an international standard in 1989, although application of preliminary versions of the language to communication services and protocols of the ISO/OSI family dates back to 1984. This history of the use of LOTOS made it apparent that more advantages than the pure production of standard reference documents were to be expected from the use of such formal description techniques. LOTOSphere: Software Development with LOTOS describes in depth a five year project that moved LOTOS out of the ISO tower into software engineering practice. LOTOS became a vehicle for efficient, yet formally based industrial software specification, design, verification, implementation and testing. LOTOSphere: Software Development with LOTOS is divided into six parts. The first introduces the reader to LOTOS and the project LOTOSphere. The five remaining each treat an important part of the software development life cycle using LOTOS. This is the first book to give a comprehensive treatment of the use of these formal description techniques in a software engineering environment. It will thus be a valuable reference for researchers and software developers and can also be used as a text for an advanced course on the subject

    Addressing performance requirements in the FDT-based design of distributed systems

    Get PDF
    The development of distributed systems is generally regarded as a complex and costly task, and for this reason formal description techniques such as LOTOS and ESTELLE (both standardized by the ISO) are increasingly used in this process. Our experience is that LOTOS can be exploited at many stages on the design trajectory, from requirements specification to implementation, but that the language elements do not allow direct formalization of performance requirements. To avoid duplication of effort by using two formalisms with distinct approaches, we propose a design method that incorporates performance constraints in an heuristic but effective manner

    What makes industries believe in formal methods

    Get PDF
    The introduction of formal methods in the design and development departments of an industrial company has far reaching and long lasting consequences. In fact it changes the whole environment of methods, tools and skills that determine the design culture of that company. A decision to replace current design practice by formal methods, therefore, appears a vital one and is not lightly taken. The past has shown that efforts to introduce formal methods in industry has faced a lot of controversy and opposition at various hierarchical levels in companies, resulting in a marginal spread of such methods. This paper revisits the requirements for formal description techniques and identifies some critical success and inhibiting factors associated with the introduction of formal methods in the industrial practice. One of the inhibiting factors is the often encountered lack of appropriateness of the formal model to express and manipulate the design concerns that determine the world of the engineer. This factor motivated our research in the area of architectural and implementation design concepts. The last two sections of this paper report on some results of this research

    Web Services: A Process Algebra Approach

    Full text link
    It is now well-admitted that formal methods are helpful for many issues raised in the Web service area. In this paper we present a framework for the design and verification of WSs using process algebras and their tools. We define a two-way mapping between abstract specifications written using these calculi and executable Web services written in BPEL4WS. Several choices are available: design and correct errors in BPEL4WS, using process algebra verification tools, or design and correct in process algebra and automatically obtaining the corresponding BPEL4WS code. The approaches can be combined. Process algebra are not useful only for temporal logic verification: we remark the use of simulation/bisimulation both for verification and for the hierarchical refinement design method. It is worth noting that our approach allows the use of any process algebra depending on the needs of the user at different levels (expressiveness, existence of reasoning tools, user expertise)

    Functionally Specified Distributed Transactions in Co-operative Scenarios

    Get PDF
    Addresses the problem of specifying co-operative, distributed transactions in a manner that can be subject to verification and testing. Our approach combines the process-algebraic language LOTOS and the object-oriented database modelling language TM to obtain a clear and formal protocol for distributed database transactions meant to describe co-operation scenarios. We argue that a separation of concerns, namely the interaction of database applications on the one hand and data modelling on the other, results in a practical, modular approach that is formally well-founded. An advantage of this is that we may vary over transaction models to support the language combinatio

    Verifying service continuity in a satellite reconfiguration procedure: application to a satellite

    Get PDF
    The paper discusses the use of the TURTLE UML profile to model and verify service continuity during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular. TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators. Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL, and discusses its application to a payload software application in charge of an embedded packet switch. The paper demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded software

    Viewpoint consistency in Z and LOTOS: A case study

    Get PDF
    Specification by viewpoints is advocated as a suitable method of specifying complex systems. Each viewpoint describes the envisaged system from a particular perspective, using concepts and specification languages best suited for that perspective. Inherent in any viewpoint approach is the need to check or manage the consistency of viewpoints and to show that the different viewpoints do not impose contradictory requirements. In previous work we have described a range of techniques for consistency checking, refinement, and translation between viewpoint specifications, in particular for the languages LOTOS and Z. These two languages are advocated in a particular viewpoint model, viz. that of the Open Distributed Processing (ODP) reference model. In this paper we present a case study which demonstrates how all these techniques can be combined in order to show consistency between a viewpoint specified in LOTOS and one specified in Z. Keywords: Viewpoints; Consistency; Z; LOTOS; ODP

    From ACT-ONE to Miranda, a Translation Experiment

    Get PDF
    It is now almost universally acknowledged that the data language ACT-ONE associated with the formal description technique LOTOS is inappropriate for the purpose of OSI formal description. In response to this the LOTOS restandardisation activity plans to replace ACT-ONE with a functional language. Thus, compatibility between ACT-ONE and the replacement data language becomes an issue. In response to this, we present an experimental investigation of backward compatibility between ACT-ONE and the new LOTOS data language. Specifically, we investigate translating ACT-ONE data types into the functional language Miranda. Miranda has been chosen as it is a widely used functional programming language and it is close in form to the anticipated new data language. This work serves as a ``verification of concept'' for translating ACT-ONE to the E-LOTOS data language. It identifies the bounds on embedding ACT-ONE in a functional data language. In particular, it indicates what can be translated and what cannot be translated. In addition, the paper reveals pertinent issues which can inform the E-LOTOS work. For example, which constructs are needed in E-LOTOS in order to support the class of data type specifications typically made in the LOTOS setting? We conclude with a number of specific recommendations for the E-LOTOS data language
    • ā€¦
    corecore