502 research outputs found

    Coordination mechanisms with mathematical programming models for decentralized decision-making, a literature review

    Full text link
    [EN] The increase in the complexity of supply chains requires greater efforts to align the activities of all its members in order to improve the creation of value of their products or services offered to customers. In general, the information is asymmetric; each member has its own objective and limitations that may be in conflict with other members. Operations managements face the challenge of coordinating activities in such a way that the supply chain as a whole remains competitive, while each member improves by cooperating. This document aims to offer a systematic review of the collaborative planning in the last decade on the mechanisms of coordination in mathematical programming models that allow us to position existing concepts and identify areas where more research is needed.Rius-Sorolla, G.; Maheut, J.; Estelles Miguel, S.; García Sabater, JP. (2020). Coordination mechanisms with mathematical programming models for decentralized decision-making, a literature review. Central European Journal of Operations Research. 28(1):61-104. https://doi.org/10.1007/s10100-018-0594-zS61104281Acar Y, Atadeniz SN (2015) Comparison of integrated and local planning approaches for the supply network of a globally-dispersed enterprise. Int J Prod Econ 167:204–219. https://doi.org/10.1016/j.ijpe.2015.05.028Agnetis A, Hall NG, Pacciarelli D (2006) Supply chain scheduling: sequence coordination. Discrete Appl Math 154(15):2044–2063. https://doi.org/10.1016/j.dam.2005.04.019Agnetis A, Aloulou MA, Fu LL (2016) Production and interplant batch delivery scheduling: Dominance and cooperation. Int J Prod Econ 182:38–49. https://doi.org/10.1016/j.ijpe.2016.08.007Albrecht M (2010) Supply chain coordination mechanisms Lecture notes in economics and mathematical systems, vol 628. Springer, Berlin. https://doi.org/10.1007/978-3-642-02833-5Albrecht M, Stadtler H (2015) Coordinating decentralized linear programs by exchange of primal information. Eur J Oper Res 247(3):788–796. https://doi.org/10.1016/j.ejor.2015.06.045Arkan A, Hejazi SR (2012) Coordinating orders in a two echelon supply chain with controllable lead time and ordering cost using the credit period. Comput Ind Eng 62(1):56–69. https://doi.org/10.1016/j.cie.2011.08.016Arshinder, Kanda A, Deshmukh SG (2008) Supply chain coordination: perspectives, empirical studies and research directions. Int J Prod Econ 115(2):316–335. https://doi.org/10.1016/j.ijpe.2008.05.011Attanasio A, Ghiani G, Grandinetti L, Guerriero F (2006) Auction algorithms for decentralized parallel machine scheduling. Parallel Comput 32(9):701–709. https://doi.org/10.1016/j.parco.2006.03.002Badole CM, Jain R, Rathore APS, Nepal B (2012) Research and opportunities in supply chain modeling: a review. Int J Supply Chain Manag 1(3):63–86Bajgiran OS, Zanjani MK, Nourelfath M (2016) The value of integrated tactical planning optimization in the lumber supply chain. Int J Prod Econ 171:22–33. https://doi.org/10.1016/j.ijpe.2015.10.021Behnamian J (2014) Multi-cut Benders decomposition approach to collaborative scheduling. Int J Comput Integr Manuf 28(11):1–11. https://doi.org/10.1080/0951192X.2014.961963Ben-Daya M, Darwish M, Ertogral K (2008) The joint economic lot sizing problem: review and extensions. Eur J Oper Res 185(2):726–742. https://doi.org/10.1016/j.ejor.2006.12.026Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer Math 4(1):238–252. https://doi.org/10.1007/BF01386316Bhatnagar R, Chandra P, Goyal SK (1993) Models for multi-plant coordination. Eur J Oper Res 67(2):141–160. https://doi.org/10.1016/0377-2217(93)90058-UBuer T, Homberger JJ, Gehring H (2013) A collaborative ant colony metaheuristic for distributed multi-level uncapacitated lot-sizing. Int J Prod Res 51(17):5253–5270. https://doi.org/10.1080/00207543.2013.802822Buer T, Ziebuhr M, Kopfer H (2015) A coordination mechanism for a collaborative lot-sizing problem with rivaling agents. In: Mattfeld D, Spengler T, Brinkmann J, Grunewald M (eds) Logistics management. Springer, Cham. https://doi.org/10.1007/978-3-319-13177-1_26Buxmann P, Ahsen A Von, Díaz LM (2008) Economic evaluation of cooperation scenarios in supply chains. J Enterp Inf Manag 21(3):247–262. https://doi.org/10.1108/17410390810866628Chakraborty A, Chatterjee AK (2015) A surcharge pricing scheme for supply chain coordination under JIT environment. Eur J Oper Res 253(1):14–24. https://doi.org/10.1016/j.ejor.2016.02.001Chen IJ, Paulraj A, Lado AA (2004) Strategic purchasing, supply management, and firm performance. J Oper Manag 22(5):505–523. https://doi.org/10.1016/j.jom.2004.06.002Cheng JH (2011) Inter-organizational relationships and information sharing in supply chains. Int J Inf Manag 31(4):374–384. https://doi.org/10.1016/j.ijinfomgt.2010.09.004Cheng R, Forbes JF, San Yip W, Fraser Forbes J, Yip WS (2008) Dantzig–Wolfe decomposition and plant-wide MPC coordination. Comput Chem Eng 32(7):1507–1522. https://doi.org/10.1016/j.compchemeng.2007.07.003Cooper MC, Lambert DM, Pagh JD (1997) Supply chain management: more than a new name for logistics. Int J Logist Manag 8(1):1–14. https://doi.org/10.1108/09574099710805556Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8(1):101–111. https://doi.org/10.1287/opre.8.1.101Dash RK, Vytelingum P, Rogers A, David E, Jennings NR (2007) Market-based task allocation mechanisms for limited-capacity suppliers. IEEE Trans Syst Man Cybern Part A Syst Hum 37(3):391–405. https://doi.org/10.1109/TSMCA.2007.893474Dudek G, Stadtler H (2005) Negotiation-based collaborative planning between supply chains partners. Eur J Operat Res 163(3):668–687. https://doi.org/10.1016/j.ejor.2004.01.014Dudek G, Stadtler H (2007) Negotiation-based collaborative planning in divergent two-tier supply chains. Int J Prod Res 45(2):465–484Ertogral K, David Wu S (2000) Auction-theoretic coordination of production planning in the supply chain. IIE Trans 32:931–940. https://doi.org/10.1080/07408170008967451Eslikizi S, Ziebuhr M, Kopfer H, Buer T (2015) Shapley-based side payments and simulated annealing for distributed lot-sizing. IFAC-PapersOnLine 48(3):1592–1597. https://doi.org/10.1016/j.ifacol.2015.06.313Fan M, Stallaert J, Whinston AB (2003) Decentralized mechanism design for supply chain organizations using an auction market. Inf Syst Res 14(1):1–22. https://doi.org/10.1287/isre.14.1.1.14763Feng Y, D’Amours S, Beauregard R (2008) The value of sales and operations planning in oriented strand board industry with make-to-order manufacturing system: cross functional integration under deterministic demand and spot market recourse. Int J Prod Econ 115(1):189–209. https://doi.org/10.1016/j.ijpe.2008.06.002Fisher ML (1985) An applications oriented guide to Lagrangian relaxation. Interfaces 15(2):10–21. https://doi.org/10.1287/inte.15.2.10Fisher ML (2004) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 50(12 Supplement):1861–1871. https://doi.org/10.1287/mnsc.1040.0263Frazzon E, Makuschewits T, Scholz-Reiter B, Novaes AGN (2010) Assessing the integrated scheduling of manufacturing and transportation systems along global supply chains. In: World conference on transport research, LisbonGaudreault J, Forget P, Frayret JMJ, Rousseau A, Lemieux S, D’Amours S (2010) Distributed operations planning in the softwood lumber supply chain: models and coordination. Int J Ind Eng Theory Appl Pract 17(3):168–189Gunnerud V, Foss B (2010) Oil production optimization—a piecewise linear model, solved with two decomposition strategies. Comput Chem Eng 34(11):1803–1812. https://doi.org/10.1016/j.compchemeng.2009.10.019Harb H, Paprott JN, Matthes P, Schütz T, Streblow R, Mueller D (2015) Decentralized scheduling strategy of heating systems for balancing the residual load. Build Environ 86:132–140. https://doi.org/10.1016/j.buildenv.2014.12.015Held M, Karp RM (1970) The traveling-salesman problem and minimum spanning trees. Oper Res 18(6):1138–1162. https://doi.org/10.1287/opre.18.6.1138Held M, Karp RM (1971) The traveling-salesman problem and minimum spanning trees: part II. Math Program 1(1):6–25. https://doi.org/10.1007/BF01584070Homberger J (2010) Decentralized multi-level uncapacitated lot-sizing by automated negotiation. 4OR 8(2):155–180. https://doi.org/10.1007/s10288-009-0104-1Homberger J (2011) A generic coordination mechanism for lot-sizing in supply chains. Electron Commer Res 11(2):123–149. https://doi.org/10.1007/s10660-010-9053-1Homberger J, Gehring H (2010) A pheromone-based negotiation mechanism for lot-sizing in supply chains. In: 2010 43rd Hawaii international conference on system sciences. IEEE, pp 1–10. https://doi.org/10.1109/hicss.2010.26Homberger J, Gehring H (2011) An ant colony optimization-based negotiation approach for lot-sizing in supply chains. Int J Inf Process Manag 2(3):86–99. https://doi.org/10.4156/ijipm.vol2.issue3.10Homberger J, Gehring H, Buer T (2015) Integrating side payments into collaborative planning for the distributed multi-level unconstrained lot sizing problem. In: Bui TX, Sprague RH (eds) 2015 48th Hawaii international conference on system sciences, vol 2015. IEEE, pp 1068–1077. https://doi.org/10.1109/hicss.2015.131Huang GQ, Lau JSK, Mak KL (2003) The impacts of sharing production information on supply chain dynamics: a review of the literature. Int J Prod Res 41(7):1483–1517. https://doi.org/10.1080/0020754031000069625Jeong I-J (2012) A centralized/decentralized design of a full return contract for a risk-free manufacturer and a risk-neutral retailer under partial information sharing. Int J Prod Econ 136(1):110–115. https://doi.org/10.1016/j.ijpe.2011.09.019Jeong IJ, Leon VJ (2002) Decision-making and cooperative interaction via coupling agents in organizationally distributed systems. IIE Trans (Inst Ind Eng) 34(9):789–802. https://doi.org/10.1023/A:1015548705266Jeong IJ, Yim SB (2009) A job shop distributed scheduling based on Lagrangian relaxation to minimise total completion time. Int J Prod Res 47(24):6783–6805. https://doi.org/10.1080/00207540701824217Jia ZZ, Deschamps JC, Dupas R (2016) A negotiation protocol to improve planning coordination in transport-driven supply chains. J Manuf Syst 38:13–26. https://doi.org/10.1016/j.jmsy.2015.10.003Jung H, Chen FF, Jeong B (2008) Decentralized supply chain planning framework for third party logistics partnership. Comput Ind Eng 55(2):348–364. https://doi.org/10.1016/j.cie.2007.12.017Katok E, Pavlov V (2013) Fairness in supply chain contracts: a laboratory study. J Oper Manag 31(3):129–137. https://doi.org/10.1016/j.jom.2013.01.001Kelly JD, Zyngier D (2008) Hierarchical decomposition heuristic for scheduling: coordinated reasoning for decentralized and distributed decision-making problems. Comput Chem Eng 32(11):2684–2705. https://doi.org/10.1016/j.compchemeng.2007.08.007Kong J, Rönnqvist M (2014) Coordination between strategic forest management and tactical logistic and production planning in the forestry supply chain. Int Trans Oper Res 21(5):703–735. https://doi.org/10.1111/itor.12089Kovács A, Egri P, Kis T, Váncza J (2013) Inventory control in supply chains: alternative approaches to a two-stage lot-sizing problem. Int J Prod Econ 143(2):385–394. https://doi.org/10.1016/j.ijpe.2012.01.001Kumar BK, Nagaraju D, Narayanan S (2016) Supply chain coordination models: a literature review. Indian J Sci Technol. https://doi.org/10.17485/ijst/2016/v9i38/86938Kutanoglu E, David Wu S (1999) On combinatorial auction and Lagrangean relaxation for distributed resource scheduling. IIE Trans 31(9):813–826. https://doi.org/10.1080/07408179908969883Lau HC, Zhao ZJ, Ge SS, Lee TH (2011) Allocating resources in multiagent flowshops with adaptive auctions. IEEE Trans Autom Sci Eng 8(4):732–743. https://doi.org/10.1109/TASE.2011.2160536Lee DJ, Jeong IJ (2010) A distributed coordination for a single warehouse-multiple retailer problem under private information. Int J Prod Econ 125(1):190–199. https://doi.org/10.1016/j.ijpe.2010.02.001Lehoux N, D’Amours S, Frein Y, Langevin A, Penz B (2010a) Collaboration for a two-echelon supply chain in the pulp and paper industry: the use of incentives to increase profit. J Oper Res Soc 62(4):581–592. https://doi.org/10.1057/jors.2009.167Lehoux N, D’Amours S, Langevin A (2010b) A win–win collaboration approach for a two-echelon supply chain: a case study in the pulp and paper industry. Eur J Ind Eng 4(4):493. https://doi.org/10.1504/EJIE.2010.035656Lehoux N, D’Amours S, Langevin A (2014) Inter-firm collaborations and supply chain coordination: review of key elements and case study. Prod Plan Control 25(10):858–872. https://doi.org/10.1080/09537287.2013.771413Li X, Wang Q (2007) Coordination mechanisms of supply chain systems. Eur J Oper Res 179(1):1–16. https://doi.org/10.1016/j.ejor.2006.06.023Lu SYP, Lau HYK, Yiu CKF (2012) A hybrid solution to collaborative decision-making in a decentralized supply-chain. J Eng Technol Manag 29(1):95–111. https://doi.org/10.1016/j.jengtecman.2011.09.008Mahdiraji HA, Zavadskas EK, Hajiagha SHR (2015) Game theoretic approach for coordinating unlimited multi echelon supply chains. Transform Bus Econ 14(2):133–151Maheut J, Besga JM, Uribetxebarria J, Garcia-Sabater JP (2014a) A decision support system for modelling and implementing the supply network configuration and operations scheduling problem in the machine tool industry. Prod Plan Control 25(8):679–697. https://doi.org/10.1080/09537287.2013.798087Maheut J, Garcia-Sabater JP, Garcia-Sabater JJ, Marin-Garcia J (2014b) Coordination mechanism for MILP models to plan operations within an advanced planning and scheduling system in a motor company: a case study. In: Prado-Prado JC, García-Arca J (eds) Annals of industrial engineering 2012. Springer, London, pp 245–253. https://doi.org/10.1007/978-1-4471-5349-8_29Manrodt KB, Vitasek K (2004) Global process standardization: a case study. J Bus Logist 25(1):1–23. https://doi.org/10.1002/j.2158-1592.2004.tb00168.xMarin-Garcia JA, Ramirez Bayarri L, Atares Huerta L (2015) Protocol: comparing advantages and disadvantages of rating scales, behavior observation scales and paired comparison scales for behavior assessment of competencies in workers. A systematic literature review. Work Pap Oper Manag 6(2):49. https://doi.org/10.4995/wpom.v6i2.4032Mason AN, Villalobos JR (2015) Coordination of perishable crop production using auction mechanisms. Agric Syst 138:18–30. https://doi.org/10.1016/j.agsy.2015.04.008McAfee RP, McMillan J (1987) Auctions and bidding. J Econ Lit 25(2):699–738Medina-Lopez C, Marin-Garcia JA, Alfalla-Luque R (2010) Una propuesta metodológica para la realización de búsquedas sistemáticas de bibliografía (A methodological proposal for the systematic literature review). Work Pap Oper Manag. https://doi.org/10.4995/wpom.v1i2.786Mouret S, Grossmann IE, Pestiaux P (2011) A new Lagrangian decomposition approach applied to the integration of refinery planning and crude-oil scheduling. Comput Chem Eng 35(12):2750–2766. https://doi.org/10.1016/j.compchemeng.2011.03.026Mula J, Peidro D, Díaz-Madroñero M, Vicens E (2010) Mathematical programming models for supply chain production and transport planning. Eur J Oper Res 204(3):377–390. https://doi.org/10.1016/j.ejor.2009.09.008Nie L, Xu X, Zhan D (2008) Collaborative planning in supply chains by lagrangian relaxation and genetic algorithms. Int J Inf Technol Decis Mak 7(1):183–197. https://doi.org/10.1142/s0219622008002879Nishi T, Shinozaki R, Konishi M (2008) An augmented Lagrangian approach for distributed supply chain planning for multiple companies. IEEE Trans Autom Sci Eng 5(2):259–274. https://doi.org/10.1109/TASE.2007.894727Ouelhadj D, Petrovic S (2009) A survey of dynamic scheduling in manufacturing systems. J Sched 12(4):417–431. https://doi.org/10.1007/s10951-008-0090-8Pibernik R, Sucky E (2007) An approach to inter-domain master planning in supply chains. Int J Prod Econ 108(1–2):200–212. https://doi.org/10.1016/j.ijpe.2006.12.010Pittman SD, Bare BB, Briggs DG (2007) Hierarchical production planning in forestry using price-directed decomposition. Can J For 37(10):2010–2021. https://doi.org/10.1139/X07-026Polyak BT (1969) Minimization of unsmooth functionals. USSR Comput Math Math Phys 9(3):14–29. https://doi.org/10.1016/0041-5553(69)90061-5Pukkala T, Heinonen T, Kurttila M (2009) An application of a reduced cost approach to spatial forest planning. For Sci 55(1):13–22Qu T, Nie DX, Chen X, Chen XD, Dai QY, Huang GQ (2015) Optimal configuration of cluster supply chains with augmented Lagrange coordination. Comput Ind Eng 84(SI):43–55. https://doi.org/10.1016/j.cie.2014.12.026Reiss F, Buer T (2014) A coordination mechanism for capacitated lot-sizing in non-hierarchical n-tier supply chains. In: 2014 IEEE symposium on computational intelligence in production and logistics systems (Cipls), pp 9–15. https://doi.org/10.1109/cipls.2014.7007155Rius-Sorolla G, Maheut J, Estelles-Miguel S, Garcia-Sabater JP (2017) Protocol: systematic literature review on coordination mechanisms for the mathematical programming models in production planning with decentralized decision making. Work Pap Oper Manag 8(2):22. https://doi.org/10.4995/wpom.v8i2.7858Sahin F, Robinson EPP (2002) Flow coordination and information sharing in supply chains: review, implications, and directions for future research. Decis Sci 33(4):505–535. https://doi.org/10.1111/j.1540-5915.2002.tb01654.xSilva CA, Sousa JMC, Runkler TA, Sá da Costa J (2009) Distributed supply chain management using ant colony optimization. Eur J Oper Res 199(2):349–358. https://doi.org/10.1016/j.ejor.2008.11.021Simatupang T, Sridharan R (2006) The collaboration index: a measure for supply chain collaboration. Int J Phys Distrib Logist Manag 35:44–62. https://doi.org/10.1108/09600030510577421Singh G, Ernst A (2011) Resource constraint scheduling with a fractional shared resource. Oper Res Lett 39(5):363–368. https://doi.org/10.1016/j.orl.2011.06.003Singh G, O’Keefe CM (2016) Decentralised scheduling with confidentiality protection. Oper Res Lett 44(4):514–519. https://doi.org/10.1016/j.orl.2016.05.004Sokoler LE, Standardi L, Edlund K, Poulsen NK, Madsen H, Jørgensen JB (2014) A Dantzig–Wolfe decomposition algorithm for linear economic model predictive control of dynamically decoupled subsystems. J Process Control 24(8):1225–1236. https://doi.org/10.1016/j.jprocont.2014.05.013Sridharan R, Simatupang TM (2009) Managerial views of supply chain collaboration. Gadjah Mada Int J Bus 11(2):253–273Stadtler H (2007) A framework for collaborative planning and state-of-the-art. OR Spectr 31(1):5–30. https://doi.org/10.1007/s00291-007-0104-5Stadtler H, Kilger C (2008) Supply chain management and advanced planning. In: Stadtler H, Kilger C (eds) Supply chain management and advanced planning. Concepts, models, software, and case studies. Springer, BerlinStank TP, Goldsby TJ, Vickery SK (1999) Effect of service supplier performance on satisfaction and loyalty of store managers in the fast food industry. J Oper Manag 17(4):429–447. https://doi.org/10.1016/S0272-6963(98)00052-7Taghipour A, Frayret JM (2013) An algorithm to improve operations planning in decentralized supply chains. In: 2013 international conference on advanced logistics and transport, ICALT 2013, pp 100–103. https://doi.org/10.1109/icadlt.2013.6568442Tang SH, Rahimi I, Karimi H (2016a) Objectives, products and demand requirements in integrated supply chain network design: a review. Int J Ind Syst Eng 23(2):181. https://doi.org/10.1504/IJISE.2016.076399Tang J, Zeng C, Pan Z (2016b) Auction-based cooperation mechanism to parts scheduling for flexible job shop with inter-cells. Appl Soft Comput 49:590–602. https://doi.org/10.1016/j.asoc.2016.08.046Thomas A, Singh G, Krishnamoorthy M, Venkateswaran J (2013) Distributed optimisation method for multi-resource constrained scheduling in coal supply chains. Int J Prod Res 51(9):2740–2759. https://doi.org/10.1080/00207543.2012.737955Thomas A, Venkateswaran J, Singh G, Krishnamoorthy M (2014) A resource constrained scheduling problem with multiple independent producers and a single linking constraint: a coal supply chain example. Eur J Oper Res 236(3):946–956. https://doi.org/10.1016/j.ejor.2013.10.006Thomas A, Krishnamoorthy M, Singh G, Venkateswaran J (2015) Coordination in a multiple producers–distributor supply chain and the value of information. Int J Prod Econ 167:63–73. https://doi.org/10.1016/j.ijpe.2015.05.020VICS (2004) Collaborative planning, forecasting and replenishment. Retrieved January 21, 2017, from https://www.gs1us.org/Vitasek K (2016) Strategic sourcing business models. Strateg Outsour Int J 9(2):126–138. https://doi.org/10.1108/SO-02-2016-0003Walther G, Schmid E, Spengler TS (2008) Negotiation-based coordination in product recovery networks. Int J Prod Econ 111(2):334–350. https://doi.org/10.1016/j.ijpe.2006.12.069Wang L, Pfohl HC, Berbner U, Keck AK (2016) Supply chain collaboration or conflict? Information sharing and supply chain performance in the automotive industry. In: Clausen U, Friedrich H, Thaller C, Geiger C (eds) Commercial transport. Springer, Cham, pp 303–318. https://doi.org/10.1007/978-3-319-21266-1Wenzel S, Paulen R, Krämer S, Beisheim B, Engell S (2016a) Shared resource allocation in an integrated petrochemical site by price-based coordination using quadratic approximation. In: 2016 European control conference, ECC 2016, pp 1045–1050. https://doi.org/10.1109/ecc.2016.7810427Wenzel S, Paulen R, Stojanovski G, Kraemer S, Beisheim B, Engell S (2016b) Optimal resource allocation in industrial complexes by distributed optimization and dynamic pricing. At-Automatisierungstechnik 64(6):428–442. https://doi.org/10.1515/auto-2016-0003Whang S (1995) Coordination in operat

    Opportunities for the digital transformation of the banana sector supply chain based on software with artificial intelligence

    Get PDF
    Artificial intelligence offers great opportunities for the supply chain, being this a competitive advantage for today’s changing market. This article aims to identify the impacts and opportunities that artificial intelligence software can offer to facilitate the operation and improve the performance of the supply chain in the banana sector in Colombia. The work methodology consists of six steps in which a total of 72 investigations were obtained. The sources of information were four databases. As a main conclusion, the supply chain of the banana sector has everything necessary for intelligent software based solutions to be implemented in order to achieve adaptation, flexibility and sensitivity to the context and domain of execution

    Integrated management of chemical processes in a competitive environment

    Get PDF
    El objetivo general de esta Tesis es mejorar el proceso de la toma de decisiones en la gestión de cadenas de suministro, tomando en cuenta principalmente dos diferencias: ser competitivo considerando las decisiones propias de la cadena de suministro, y ser competitivo dentro de un entorno global. La estructura de ésta tesis se divide en 4 partes principales: La Parte I consiste en una introducción general de los temas cubiertos en esta Tesis (Capítulo 1). Una revisión de la literatura, que nos permite identificar las problemáticas asociadas al proceso de toma de decisiones (Capítulo 2). El Capítulo 3 presenta una introducción de las técnicas y métodos de optimización utilizados para resolver los problemas propuestos en esta Tesis. La Parte II se enfoca en la integración de los niveles de decisión, buscando mejorar la toma de decisiones de la propia cadena de suministro. El Capítulo 4 presenta una formulación matemática que integra las decisiones de síntesis de procesos y las decisiones operacionales. Además, este capítulo presenta un modelo integrado para la toma de decisiones operacionales incluyendo las características del control de procesos. El Capítulo 5 muestra la integración de las decisiones del nivel táctico y el operacional, dicha propuesta está basada en el conocimiento adquirido capturando la información relacionada al nivel operacional. Una vez obtenida esta información se incluye en la toma de decisiones a nivel táctico. Finalmente en el capítulo 6 se desarrolla un modelo simplificado para integrar múltiples cadenas de suministro. El modelo propuesto incluye la información detallada de las entidades presentes en una cadena de suministro (suministradores, plantas de producción, distribuidores y mercados) introduciéndola en un modelo matemático para su coordinación. La Parte III propone la integración explicita de múltiples cadenas de suministro que tienen que enfrentar numerosas situaciones propias de un mercado global. Asimismo, esta parte presenta una nueva herramienta de optimización basada en el uso integrado de métodos de programación matemática y conceptos relacionados a la Teoría de Juegos. En el Capítulo 7 analiza múltiples cadenas de suministro que cooperan o compiten por la demanda global del mercado. El Capítulo 8 incluye una comparación entre el problema resuelto en el Capítulo anterior y un modelo estocástico, los resultados obtenidos nos permiten situar el comportamiento de los competidores como fuente exógena de la incertidumbre típicamente asociada la demanda del mercado. Además, los resultados de ambos Capítulos muestran una mejora sustancial en el coste total de las cadenas de suministro asociada al hecho de cooperar para atender de forma conjunta la demanda disponible. Es por esto, que el Capítulo 9 presenta una nueva herramienta de negociación, basada en la resolución del mismo problema (Capítulo 7) bajo un análisis multiobjetivo. Finalmente, la parte IV presenta las conclusiones finales y una descripción general del trabajo futuro.This Thesis aims to enhance the decision making process in the SCM, remarking the difference between optimizing the SC to be competitive by its own, and to be competitive in a global market in cooperative and competitive environments. The structure of this work has been divided in four main parts: Part I: consists in a general introduction of the main topics covered in this manuscript (Chapter I); a review of the State of the Art that allows us to identify new open issues in the PSE (Chapter 2). Finally, Chapter 3 introduces the main optimization techniques and methods used in this contribution. Part II focuses on the integration of decision making levels in order to improve the decision making of a single SC: Chapter 4 presents a novel formulation to integrate synthesis and scheduling decision making models, additionally, this chapter also shows an integrated operational and control decision making model for distributed generations systems (EGS). Chapter 5 shows the integration of tactical and operational decision making levels. In this chapter a knowledge based approach has been developed capturing the information related to the operational decision making level. Then, this information has been included in the tactical decision making model. In Chapter 6 a simplified approach for integrated SCs is developed, the detailed information of the typical production‐distribution SC echelons has been introduced in a coordinated SC model. Part III proposes the explicit integration of several SC’s decision making in order to face several real market situations. As well, a novel formulation is developed using an MILP model and Game Theory (GT) as a decision making tool. Chapter 7 includes the tactical and operational analysis of several SC’s cooperating or competing for the global market demand. Moreover, Chapter 8 includes a comparison, based on the previous results (MILP‐GT optimization tool) and a two stage stochastic optimization model. Results from both Chapters show how cooperating for the global demand represent an improvement of the overall total cost. Consequently, Chapter 9 presents a bargaining tool obtained by the Multiobjective (MO) resolution of the model presented in Chapter 7. Finally, final conclusions and further work have been provided in Part IV.Postprint (published version

    Synchronizing the Retail Supply Chain

    Get PDF
    Dit proefschrift ontwerpt een retail supply chain, die beter en goedkoper is dan de gangbare. Dit wordt bereikt door de distributie te synchroniseren op de productie¬momenten. Goederen zouden direct uit productie al stroomafwaarts moeten bewegen, van fabrikant naar retailer, tegen lage kosten, in volle pallets en in volle auto’s en in hoeveel¬heden die groot genoeg zijn om de vraag tot het volgende productiemoment te dekken. Door de formules van de "Krantenverkoper" en die van de economische ordergrootte (EOQ) aan te passen aan een multi-echelon divergerend distributienetwerk, kan ook theoretisch worden bewezen dat het stroomafwaarts positioneren van voorraden inderdaad optimaal is en dat de voorraden daardoor zullen dalen. De huidige magazijnen van de leveranciers kunnen worden gereduceerd tot overslagpunten, waar goederen van de verschillende fabrieken van een leverancier worden samengebracht om rijden met vollere vrachtwagens mogelijk maken. Kleinere hoeveelheden kunnen leveranciers beter afleveren bij het dichtstbijzijnde distributiecentrum van een retailer, waarna de retailer zelf het deel met bestemming elders verder vervoert. Tenslotte kan de winkelbevoorrading worden aangepast aan de schapruimte, waardoor de werkwijze in de distributiecentra kan worden gerationaliseerd.Piet van der Vlist (1947) was born in Ouderkerk aan den IJssel. He received his high-school diploma from the Marnix Gymnasium in Rotterdam. Also in Rotterdam he graduated as Electronics Engineer at the University of Applied Sciences. He obtained a Master of Science in Electronics at the Delft University of Technology and one in Management Sciences at the University of Twente. He worked 15 years with the Dutch Ministry of Defense on the design and realization of the first generation digital communications systems. Then he joined Bakkenist Management Consultants and later Deloitte Consultancy, together for over 20 years. As consultant he was involved in numerous projects on Data exchange and Supply Chain redesign. Besides that, he was for 11 years (part-time) professor in ICT and Logistics at the Eindhoven University of Technology. Piet wrote and edited several books on data exchange and published numerous articles in business and scientific journals. A fairly good overview of his scientific career can be found in the "Liber Amicorum" that his friends wrote when he left Eindhoven University1. His current research interests lie in the design and management of retail supply chains, all the way from production down to the shelves. He found that the supply chain with the overall lowest costs requires synchronization of distribution to production and not the other way around as current practice seems to dictate. When he had to quit his jobs for health reasons, he finally found the opportunity to devote his time to research and extend the theory that supports Supply Chain Synchronization. He programmed built to purpose simulation models to get a better insight in the dynamics of synchronized supply chains. He joined both the Rotterdam Erasmus University to work with Professor Jo van Nunen and the Eindhoven University of Technology to work with Professor Ton de Kok. This PhD thesis is the result of that effort.This thesis is a design of a retail supply chain that is better and cheaper than the usual one. This is achieved by synchronizing distribution to production. Right from production goods should move downstream the supply chain at low cost in full pallets and in full truckloads, in quantities large enough to cover the needs till the next production run. By extending both the Newsvendor- and the EOQ-formulae to a multi-echelon divergent network, it can be proved that such forward positioning of inventory indeed is optimal and that overall supply chain inventories will drop. The suppliers’ warehouses become stockless cross docking points, where goods from the supplier’s various sourcing plants are brought together to consolidate them into full truckloads. Whenever suppliers deliver lower volumes, they better bring these goods to the nearest retailer’s facility; thereafter the retailer himself should move these goods onward to the proper destination within the retailer’s network. And finally shop replenishment should be rationalized based on shelf coverage, so as to enhance the retailer’s warehouse operations

    A contribution to support decision making in energy/water sypply chain optimisation

    Get PDF
    The seeking of process sustainability forces enterprises to change their operations. Additionally, the industrial globalization implies a very dynamic market that, among other issues, promotes the enterprises competition. Therefore, the efficient control and use of their Key Performance Indicators, including profitability, cost reduction, demand satisfaction and environmental impact associated to the development of new products, is a significant challenge. All the above indicators can be efficiently controlled through the Supply Chain Management. Thus, companies work towards the optimization of their individual operations under competitive environments taking advantage of the flexibility provided by the virtually inexistent world market restrictions. This is achieved by the coordination of the resource flows, across all the entities and echelons belonging to the system network. Nevertheless, such coordination is significantly complicated if considering the presence of uncertainty and even more if seeking for a win-win outcome. The purpose of this thesis is extending the current decision making strategies to expedite these tasks in industrial processes. Such a contribution is based on the development of efficient mathematical models that allows coordinating large amount of information synchronizing the production and distribution tasks in terms of economic, environmental and social criteria. This thesis starts presents an overview of the requirements of sustainable production processes, describing and analyzing the current methods and tools used and identifying the most relevant open issues. All the above is always within the framework of Process System Engineering literature. The second part of this thesis is focused in stressing the current Multi-Objective solution strategies. During this part, first explores how the profitability of the Supply Chain can be enhanced by considering simultaneously multiple objectives under demand uncertainties. Particularly, solution frameworks have been proposed in which different multi-criteria decision making strategies have been combined with stochastic approaches. Furthermore, additional performance indicators (including financial and operational ones) have been included in the same solution framework to evaluate its capabilities. This framework was also applied to decentralized supply chains problems in order to explore its capabilities to produce solution that improves the performances of each one of the SC entities simultaneously. Consequently, a new generalized mathematical formulation which integrates many performance indicators in the production process within a supply chain is efficiently solved. Afterwards, the third part of the thesis extends the proposed solution framework to address the uncertainty management. Particularly, the consideration of different types and sources of uncertainty (e.g. external and internal ones) where considered, through the implementation of preventive approaches. This part also explores the use of solution strategies that efficiently selects the number of scenarios that represent the uncertainty conditions. Finally, the importance and effect of each uncertainty source over the process performance is detailed analyzed through the use of surrogate models that promote the sensitivity analysis of those uncertainties. The third part of this thesis is focused on the integration of the above multi-objective and uncertainty approaches for the optimization of a sustainable Supply Chain. Besides the integration of different solution approaches, this part also considers the integration of hierarchical decision levels, by the exploitation of mathematical models that assess the consequences of considering simultaneously design and planning decisions under centralized and decentralized Supply Chains. Finally, the last part of this thesis provides the final conclusions and further work to be developed.La globalización industrial genera un ambiente dinámico en los mercados que, entre otras cosas, promueve la competencia entre corporaciones. Por lo tanto, el uso eficiente de las los indicadores de rendimiento, incluyendo rentabilidad, satisfacción de la demanda y en general el impacto ambiental, representa un area de oportunidad importante. El control de estos indicadores tiene un efecto positivo si se combinan con la gestión de cadena de suministro. Por lo tanto, las compañías buscan definir sus operaciones para permanecer activas dentro de un ambiente competitivo, tomando en cuenta las restricciones en el mercado mundial. Lo anterior puede ser logrado mediante la coordinación de los flujos de recursos a través de todas las entidades y escalones pertenecientes a la red del sistema. Sin embargo, dicha coordinación se complica significativamente si se quiere considerar la presencia de incertidumbre, y aún más, si se busca exclusivamente un ganar-ganar. El propósito de esta tesis es extender el alcance de las estrategias de toma de decisiones con el fin de facilitar estas tareas dentro de procesos industriales. Estas contribuciones se basan en el desarrollo de modelos matemáticos eficientes que permitan coordinar grandes cantidades de información sincronizando las tareas de producción y distribución en términos económicos, ambientales y sociales. Esta tesis inicia presentando una visión global de los requerimientos de un proceso de producción sostenible, describiendo y analizando los métodos y herramientas actuales así como identificando las áreas de oportunidad más relevantes dentro del marco de ingeniería de procesos La segunda parte se enfoca en enfatizar las capacidades de las estrategias de solución multi-objetivo, durante la cual, se explora el mejoramiento de la rentabilidad de la cadena de suministro considerando múltiples objetivos bajo incertidumbres en la demanda. Particularmente, diferentes marcos de solución han sido propuestos en los que varias estrategias de toma de decisión multi-criterio han sido combinadas con aproximaciones estocásticas. Por otra parte, indicadores de rendimiento (incluyendo financiero y operacional) han sido incluidos en el mismo marco de solución para evaluar sus capacidades. Este marco fue aplicado también a problemas de cadenas de suministro descentralizados con el fin de explorar sus capacidades de producir soluciones que mejoran simultáneamente el rendimiento para cada uno de las entidades dentro de la cadena de suministro. Consecuentemente, una nueva formulación que integra varios indicadores de rendimiento en los procesos de producción fue propuesta y validada. La tercera parte de la tesis extiende el marco de solución propuesto para abordar el manejo de incertidumbres. Particularmente, la consideración de diferentes tipos y fuentes de incertidumbre (p.ej. externos e internos) fueron considerados, mediante la implementación de aproximaciones preventivas. Esta parte también explora el uso de estrategias de solución que elige eficientemente el número de escenarios necesario que representan las condiciones inciertas. Finalmente, la importancia y efecto de cada una de las fuentes de incertidumbre sobre el rendimiento del proceso es analizado en detalle mediante el uso de meta modelos que promueven el análisis de sensibilidad de dichas incertidumbres. La tercera parte de esta tesis se enfoca en la integración de las metodologías de multi-objetivo e incertidumbre anteriormente expuestas para la optimización de cadenas de suministro sostenibles. Además de la integración de diferentes métodos. Esta parte también considera la integración de diferentes niveles jerárquicos de decisión, mediante el aprovechamiento de modelos matemáticos que evalúan lasconsecuencias de considerar simultáneamente las decisiones de diseño y planeación de una cadena de suministro centralizada y descentralizada. La parte final de la tesis detalla las conclusiones y el trabajo a futuro necesario sobre esta línea de investigaciónPostprint (published version

    The responsive reply chain: the influence of the positioning of decoupling points

    Get PDF
    Manufacturing supply chains have been challenged by high competition, dynamic, and stochastic conditions. They have to be constantly responsive in today’s ever-changing manufacturing environment. The proper positioning of decoupling points for material flow and information flow has a significant potential for increasing responsiveness in a supply chain. Positioning the material decoupling point as close to the end consumer as possible whilst the information decoupling point is positioned upstream is the key to the industries’ ability to reduce lead time and enhance performance in the dynamic behaviour of the supply chain. [Continues.
    corecore