396 research outputs found

    Lossy to lossless object-based coding of 3-D MRI data

    Get PDF
    We propose a fully three-dimensional object-based coding system exploiting the diagnostic relevance of the different regions of the volumetric data for rate allocation. The data are first decorrelated via a 3D discrete wavelet transform. The implementation via the lifting steps scheme allows to map integer-to-integer values, enabling lossless coding, and facilitates the definition of the object-based inverse transform. The coding process assigns disjoint segments of the bitstream to the different objects, which can be independently accessed and reconstructed at any up-to-lossless quality. Two fully 3D coding strategies are considered: Embedded Zerotree Coding (EZW-3D) and Multidimensional Layered Zero Coding (MLZC), both generalized for Region of Interest (ROI) based processing. In order to avoid artifacts along region boundaries, some extra coefficients must be encoded for each object. This gives rise to an overheading of the bitstream with respect to the case where the volume is encoded as a whole. The amount of such extra information depends on both the filter length and the decomposition depth. The system is characterized on a set of head magnetic resonance images. Results show that MLZC and EZW-3D have competitive performances. In particular, the best MLZC mode outperforms the other state-of-the-art techniques on one of the datasets for which results are available in the literature

    Hybrid Region-based Image Compression Scheme for Mamograms and Ultrasound Images

    Get PDF
    The need for transmission and archive of mammograms and ultrasound Images has dramatically increased in tele-healthcare applications. Such images require large amount of' storage space which affect transmission speed. Therefore an effective compression scheme is essential. Compression of these images. in general. laces a great challenge to compromise between the higher compression ratio and the relevant diagnostic information. Out of the many studied compression schemes. lossless . IPl. (i- LS and lossy SPII IT are found to he the most efficient ones. JPEG-LS and SI'll IT are chosen based on a comprehensive experimental study carried on a large number of mammograms and ultrasound images of different sizes and texture. The lossless schemes are evaluated based on the compression ratio and compression speed. The distortion in the image quality which is introduced by lossy methods evaluated based on objective criteria using Mean Square Error (MSE) and Peak signal to Noise Ratio (PSNR). It is found that lossless compression can achieve a modest compression ratio 2: 1 - 4: 1. bossy compression schemes can achieve higher compression ratios than lossless ones but at the price of the image quality which may impede diagnostic conclusions. In this work, a new compression approach called Ilvbrid Region-based Image Compression Scheme (IIYRICS) has been proposed for the mammograms and ultrasound images to achieve higher compression ratios without compromising the diagnostic quality. In I LYRICS, a modification for JPI; G-LS is introduced to encode the arbitrary shaped disease affected regions. Then Shape adaptive SPIT IT is applied on the remaining non region of interest. The results clearly show that this hybrid strategy can yield high compression ratios with perfect reconstruction of diagnostic relevant regions, achieving high speed transmission and less storage requirement. For the sample images considered in our experiment, the compression ratio increases approximately ten times. However, this increase depends upon the size of the region of interest chosen. It is also föund that the pre-processing (contrast stretching) of region of interest improves compression ratios on mammograms but not on ultrasound images

    The Comprehensive Review of Neural Network: An Intelligent Medical Image Compression for Data Sharing

    Get PDF
    In the healthcare environment, digital images are the most commonly shared information. It has become a vital resource in health care services that facilitates decision-making and treatment procedures. The medical image requires large volumes of storage and the storage scale continues to grow because of the advancement of medical image technology. To enhance the interaction and coordination between healthcare institutions, the efficient exchange of medical information is necessary. Therefore, the sharing of the medical image with zero loss of information and efficiency needs to be guaranteed exactly. Image compression helps ensure that the purpose of sharing this data from a medical image must be as intelligent as possible to contain valuable information while at the same time minimizing unnecessary diagnostic information. Artificial Neural Network has been used to solve many issues in the processing of images. It has proved its dominance in the handling of noisy or incomplete image compression applications over traditional methods. It contributes to the resulting image by a high compression ratio and noise reduction. This paper reviews previous studies on the compression of intelligent medical images with the neural network approach to data sharing

    MICCS: A Novel Framework for Medical Image Compression Using Compressive Sensing

    Get PDF
    The vision of some particular applications such as robot-guided remote surgery where the image of a patient body will need to be captured by the smart visual sensor and to be sent on a real-time basis through a network of high bandwidth but yet limited. The particular problem considered for the study is to develop a mechanism of a hybrid approach of compression where the Region-of-Interest (ROI) should be compressed with lossless compression techniques and Non-ROI should be compressed with Compressive Sensing (CS) techniques. So the challenge is gaining equal image quality for both ROI and Non-ROI while overcoming optimized dimension reduction by sparsity into Non-ROI. It is essential to retain acceptable visual quality to Non-ROI compressed region to obtain a better reconstructed image. This step could bridge the trade-off between image quality and traffic load. The study outcomes were compared with traditional hybrid compression methods to find that proposed method achieves better compression performance as compared to conventional hybrid compression techniques on the performances parameters e.g. PSNR, MSE, and Compression Ratio

    Hierarchical Lossless Image Compression for Telemedicine Applications

    Get PDF
    AbstractThe main aim of hierarchical lossless image compression is to improve accuracy, reduce the bit rate and improve the compression efficiency for the storage and transmission of the medical images while maintain an acceptable image quality for diagnosis purpose. The cost and limitation in bandwidth of wireless channels has made compression is necessity in today's era. In medical images, the contextual region is an area which contains an important information and must be transmitted without distortion. In this paper the selected region of the image is encoded with Adaptive Multiwavelet Transform AMWT) using Multi Dimensional Layered Zero Coding (MLZC). Experimental results shows that Peak Signal to Noise Ratio (PSNR), Correlation Coefficient (CC), Mean Structural Similarity Index (MSSIM) performance is high and Root Mean Square Error (RMSE), Mean Absolute Error (MAE) values are low, and moderate Compression Ratio (CR) at high Bits Per Pixel (BPP) when compared to the integer wavelet and multiwavelet transform

    Adapted generalized lifting schemes for scalable lossless image coding

    No full text
    International audienceStill image coding occasionally uses linear predictive coding together with multi-resolution decompositions, as may be found in several papers. Those related approaches do not take into account all the information available at the decoder in the prediction stage. In this paper, we introduce an adapted generalized lifting scheme in which the predictor is built upon two filters, leading to taking advantage of all this available information. With this structure included in a multi-resolution decomposition framework, we study two kinds of adaptation based on least squares estimation, according to different assumptions, which are either a global or a local second order stationarity of the image. The efficiency in lossless coding of these decompositions is shown on synthetic images and their performances are compared with those of well-known codecs (S+P, JPEG-LS, JPEG2000, CALIC) on actual images. Four images' families are distinguished: natural, MRI medical, satellite and textures associated with fingerprints. On natural and medical images, the performances of our codecs do not exceed those of classical codecs. Now for satellite images and textures, they present a slightly noticeable (about 0.05 to 0.08 bpp) coding gain compared to the others that permit a progressive coding in resolution, but with a greater coding time

    3D Medical Image Lossless Compressor Using Deep Learning Approaches

    Get PDF
    The ever-increasing importance of accelerated information processing, communica-tion, and storing are major requirements within the big-data era revolution. With the extensive rise in data availability, handy information acquisition, and growing data rate, a critical challenge emerges in efficient handling. Even with advanced technical hardware developments and multiple Graphics Processing Units (GPUs) availability, this demand is still highly promoted to utilise these technologies effectively. Health-care systems are one of the domains yielding explosive data growth. Especially when considering their modern scanners abilities, which annually produce higher-resolution and more densely sampled medical images, with increasing requirements for massive storage capacity. The bottleneck in data transmission and storage would essentially be handled with an effective compression method. Since medical information is critical and imposes an influential role in diagnosis accuracy, it is strongly encouraged to guarantee exact reconstruction with no loss in quality, which is the main objective of any lossless compression algorithm. Given the revolutionary impact of Deep Learning (DL) methods in solving many tasks while achieving the state of the art results, includ-ing data compression, this opens tremendous opportunities for contributions. While considerable efforts have been made to address lossy performance using learning-based approaches, less attention was paid to address lossless compression. This PhD thesis investigates and proposes novel learning-based approaches for compressing 3D medical images losslessly.Firstly, we formulate the lossless compression task as a supervised sequential prediction problem, whereby a model learns a projection function to predict a target voxel given sequence of samples from its spatially surrounding voxels. Using such 3D local sampling information efficiently exploits spatial similarities and redundancies in a volumetric medical context by utilising such a prediction paradigm. The proposed NN-based data predictor is trained to minimise the differences with the original data values while the residual errors are encoded using arithmetic coding to allow lossless reconstruction.Following this, we explore the effectiveness of Recurrent Neural Networks (RNNs) as a 3D predictor for learning the mapping function from the spatial medical domain (16 bit-depths). We analyse Long Short-Term Memory (LSTM) models’ generalisabil-ity and robustness in capturing the 3D spatial dependencies of a voxel’s neighbourhood while utilising samples taken from various scanning settings. We evaluate our proposed MedZip models in compressing unseen Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities losslessly, compared to other state-of-the-art lossless compression standards.This work investigates input configurations and sampling schemes for a many-to-one sequence prediction model, specifically for compressing 3D medical images (16 bit-depths) losslessly. The main objective is to determine the optimal practice for enabling the proposed LSTM model to achieve a high compression ratio and fast encoding-decoding performance. A solution for a non-deterministic environments problem was also proposed, allowing models to run in parallel form without much compression performance drop. Compared to well-known lossless codecs, experimental evaluations were carried out on datasets acquired by different hospitals, representing different body segments, and have distinct scanning modalities (i.e. CT and MRI).To conclude, we present a novel data-driven sampling scheme utilising weighted gradient scores for training LSTM prediction-based models. The objective is to determine whether some training samples are significantly more informative than others, specifically in medical domains where samples are available on a scale of billions. The effectiveness of models trained on the presented importance sampling scheme was evaluated compared to alternative strategies such as uniform, Gaussian, and sliced-based sampling

    WG1N5315 - Response to Call for AIC evaluation methodologies and compression technologies for medical images: LAR Codec

    Get PDF
    This document presents the LAR image codec as a response to Call for AIC evaluation methodologies and compression technologies for medical images.This document describes the IETR response to the specific call for contributions of medical imaging technologies to be considered for AIC. The philosophy behind our coder is not to outperform JPEG2000 in compression; our goal is to propose an open source, royalty free, alternative image coder with integrated services. While keeping the compression performances in the same range as JPEG2000 but with lower complexity, our coder also provides services such as scalability, cryptography, data hiding, lossy to lossless compression, region of interest, free region representation and coding
    corecore