829 research outputs found

    Weighted universal image compression

    Get PDF
    We describe a general coding strategy leading to a family of universal image compression systems designed to give good performance in applications where the statistics of the source to be compressed are not available at design time or vary over time or space. The basic approach considered uses a two-stage structure in which the single source code of traditional image compression systems is replaced with a family of codes designed to cover a large class of possible sources. To illustrate this approach, we consider the optimal design and use of two-stage codes containing collections of vector quantizers (weighted universal vector quantization), bit allocations for JPEG-style coding (weighted universal bit allocation), and transform codes (weighted universal transform coding). Further, we demonstrate the benefits to be gained from the inclusion of perceptual distortion measures and optimal parsing. The strategy yields two-stage codes that significantly outperform their single-stage predecessors. On a sequence of medical images, weighted universal vector quantization outperforms entropy coded vector quantization by over 9 dB. On the same data sequence, weighted universal bit allocation outperforms a JPEG-style code by over 2.5 dB. On a collection of mixed test and image data, weighted universal transform coding outperforms a single, data-optimized transform code (which gives performance almost identical to that of JPEG) by over 6 dB

    Investigation of Different Video Compression Schemes Using Neural Networks

    Get PDF
    Image/Video compression has great significance in the communication of motion pictures and still images. The need for compression has resulted in the development of various techniques including transform coding, vector quantization and neural networks. this thesis neural network based methods are investigated to achieve good compression ratios while maintaining the image quality. Parts of this investigation include motion detection, and weight retraining. An adaptive technique is employed to improve the video frame quality for a given compression ratio by frequently updating the weights obtained from training. More specifically, weight retraining is performed only when the error exceeds a given threshold value. Image quality is measured objectively, using the peak signal-to-noise ratio versus performance measure. Results show the improved performance of the proposed architecture compared to existing approaches. The proposed method is implemented in MATLAB and the results obtained such as compression ratio versus signalto- noise ratio are presented

    An Efficient Coding Method for Teleconferencing Video and Confocal Microscopic Image Sequences

    Get PDF
    In this paper we propose a three-dimensional vector quantization based video coding scheme. The algorithm uses a 3D vector quantization pyramidal code book based model with adaptive code book pyramidal codebook for compression. The pyramidal code book based model helps in getting high compression in case of modest motion. The adaptive vector quantization algorithm is used to train the code book for optimal performance with time. Some of the distinguished features of our algorithm are its excellent performance due to its adaptive behavior to the video composition and excellent compression due to codebook approach. We also propose an efficient codebook based post processing technique which enables the vector quantizer to possess higher correlation preservation property. Based on the special pattern of the codebook imposed by post-processing technique, a window based fast search (WBFS) algorithm is proposed. The WBFS algorithm not only accelerates the vector quantization processing, but also results in better rate-distortion performance. The proposed approach can be used for both teleconferencing videos and to compress images obtained from confocal laser scanning microscopy (CLSM). The results show that the proposed method gave higher subjective and objective image quality of reconstructed images at a better compression ratio and presented more acceptable results when applying image processing filters such as edge detection on reconstructed images. The experimental results demonstrate that the proposed method outperforms the teleconferencing compression standards H.261 and LBG based vector quantization technique

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    An Introduction to Neural Data Compression

    Full text link
    Neural compression is the application of neural networks and other machine learning methods to data compression. Recent advances in statistical machine learning have opened up new possibilities for data compression, allowing compression algorithms to be learned end-to-end from data using powerful generative models such as normalizing flows, variational autoencoders, diffusion probabilistic models, and generative adversarial networks. The present article aims to introduce this field of research to a broader machine learning audience by reviewing the necessary background in information theory (e.g., entropy coding, rate-distortion theory) and computer vision (e.g., image quality assessment, perceptual metrics), and providing a curated guide through the essential ideas and methods in the literature thus far

    Side Information Generation in Distributed Video Coding

    Get PDF
    Distributed Video Coding (DVC) coding paradigm is based largely on two theorems of Information Theory and Coding, which are Slepian-wolf theorem and Wyner-Ziv theorem that were introduced in 1973 and 1976 respectively. DVC bypasses the need of performing Motion Compensation (MC) and Motion Estimation (ME) which are largely responsible for the complex encoder in devices. DVC instead relies on exploiting the source statistics, totally/partially, at only the decoder. Wyner-Ziv coding, a particular case of DVC, which is explored in detail in this thesis. In this scenario, two correlated sources are independently encoded, while the encoded streams are decoded jointly at the single decoder exploiting the correlation between them. Although the distributed coding study dates back to 1970’s, but the practical efforts and developments in the field began only last decade. Upcoming applications (like those of video surveillance, mobile camera, wireless sensor networks) can rely on DVC, as they don’t have high computational capabilities and/or high storage capacity. Current coding paradigms, MPEG-x and H.26x standards, predicts the frame by means of Motion Compensation and Motion Estimation which leads to highly complex encoder. Whilst in WZ coding, the correlation between temporally adjacent frames is performed only at the decoder, which results in fairly low complex encoder. The main objective of the current thesis is to investigate for an improved scheme for Side Information (SI) generation in DVC framework. SI frames, available at the decoder are generated through the means of Radial Basis Function Network (RBFN) neural network. Frames are estimated from decoded key frames block-by-block. RBFN network is trained offline using training patterns from different frames collected from standard video sequences

    Studies on image compression and image reconstruction

    Get PDF
    During this six month period our works concentrated on three, somewhat different areas. We looked at and developed a number of error concealment schemes for use in a variety of video coding environments. This work is described in an accompanying (draft) Masters thesis. In the thesis we describe application of this techniques to the MPEG video coding scheme. We felt that the unique frame ordering approach used in the MPEG scheme would be a challenge to any error concealment/error recovery technique. We continued with our work in the vector quantization area. We have also developed a new type of vector quantizer, which we call a scan predictive vector quantization. The scan predictive VQ was tested on data processed at Goddard to approximate Landsat 7 HRMSI resolution and compared favorably with existing VQ techniques. A paper describing this work is included. The third area is concerned more with reconstruction than compression. While there is a variety of efficient lossless image compression schemes, they all have a common property that they use past data to encode future data. This is done either via taking differences, context modeling, or by building dictionaries. When encoding large images, this common property becomes a common flaw. When the user wishes to decode just a portion of the image, the requirement that the past history be available forces the decoding of a significantly larger portion of the image than desired by the user. Even with intelligent partitioning of the image dataset, the number of pixels decoded may be four times the number of pixels requested. We have developed an adaptive scanning strategy which can be used with any lossless compression scheme and which lowers the additional number of pixels to be decoded to about 7 percent of the number of pixels requested! A paper describing these results is included

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design
    corecore