172 research outputs found

    Lossy Kernels for Connected Dominating Set on Sparse Graphs

    Get PDF
    For alpha > 1, an alpha-approximate (bi-)kernel for a problem Q is a polynomial-time algorithm that takes as input an instance (I, k) of Q and outputs an instance (I\u27,k\u27) (of a problem Q\u27) of size bounded by a function of k such that, for every c >= 1, a c-approximate solution for the new instance can be turned into a (c alpha)-approximate solution of the original instance in polynomial time. This framework of lossy kernelization was recently introduced by Lokshtanov et al. We study Connected Dominating Set (and its distance-r variant) parameterized by solution size on sparse graph classes like biclique-free graphs, classes of bounded expansion, and nowhere dense classes. We prove that for every alpha > 1, Connected Dominating Set admits a polynomial-size alpha-approximate (bi-)kernel on all the aforementioned classes. Our results are in sharp contrast to the kernelization complexity of Connected Dominating Set, which is known to not admit a polynomial kernel even on 2-degenerate graphs and graphs of bounded expansion, unless NP subseteq coNP/poly. We complement our results by the following conditional lower bound. We show that if a class C is somewhere dense and closed under taking subgraphs, then for some value of r in N there cannot exist an alpha-approximate bi-kernel for the (Connected) Distance-r Dominating Set problem on C for any alpha > 1 (assuming the Gap Exponential Time Hypothesis)

    Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

    Get PDF
    We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that approximating within any function of the studied parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree, but a PSAKS does not. We also prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.Comment: 23 pages, 6 figures An extended abstract appeared in proceedings of STACS 201

    Lossy Kernels for Hitting Subgraphs

    Get PDF
    In this paper, we study the Connected H-hitting Set and Dominating Set problems from the perspective of approximate kernelization, a framework recently introduced by Lokshtanov et al. [STOC 2017]. For the Connected H-hitting set problem, we obtain an alpha-approximate kernel for every alpha>1 and complement it with a lower bound for the natural weighted version. We then perform a refined analysis of the tradeoff between the approximation factor and kernel size for the Dominating Set problem on d-degenerate graphs and provide an interpolation of approximate kernels between the known d^2-approximate kernel of constant size and 1-approximate kernel of size k^{O(d^2)}

    An Approximate Kernel for Connected Feedback Vertex Set

    Get PDF
    The Feedback Vertex Set problem is a fundamental computational problem which has been the subject of intensive study in various domains of algorithmics. In this problem, one is given an undirected graph G and an integer k as input. The objective is to determine whether at most k vertices can be deleted from G such that the resulting graph is acyclic. The study of preprocessing algorithms for this problem has a long and rich history, culminating in the quadratic kernelization of Thomasse [SODA 2010]. However, it is known that when the solution is required to induce a connected subgraph (such a set is called a connected feedback vertex set), a polynomial kernelization is unlikely to exist and the problem is NP-hard to approximate below a factor of 2 (assuming the Unique Games Conjecture). In this paper, we show that if one is interested in only preserving approximate solutions (even of quality arbitrarily close to the optimum), then there is a drastic improvement in our ability to preprocess this problem. Specifically, we prove that for every fixed 0<epsilon<1, graph G, and k in N, the following holds: There is a polynomial time computable graph G\u27 of size k^O(1) such that for every c >= 1, any c-approximate connected feedback vertex set of G\u27 of size at most k is a c * (1+epsilon)-approximate connected feedback vertex set of G. Our result adds to the set of approximate kernelization algorithms introduced by Lokshtanov et al. [STOC 2017]. As a consequence of our main result, we show that Connected Feedback Vertex Set can be approximated within a factor min{OPT^O(1),n^(1-delta)} in polynomial time for some delta>0

    Approximate Turing Kernelization for Problems Parameterized by Treewidth

    Get PDF
    We extend the notion of lossy kernelization, introduced by Lokshtanov et al. [STOC 2017], to approximate Turing kernelization. An α\alpha-approximate Turing kernel for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs cc-approximate solutions in O(1)O(1) time, obtains an (α⋅c)(\alpha \cdot c)-approximate solution to the considered problem, using calls to the oracle of size at most f(k)f(k) for some function ff that only depends on the parameter. Using this definition, we show that Independent Set parameterized by treewidth ℓ\ell has a (1+ε)(1+\varepsilon)-approximate Turing kernel with O(ℓ2ε)O(\frac{\ell^2}{\varepsilon}) vertices, answering an open question posed by Lokshtanov et al. [STOC 2017]. Furthermore, we give (1+ε)(1+\varepsilon)-approximate Turing kernels for the following graph problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint Triangle Packing and Connected Vertex Cover. We generalize the result for Independent Set and Vertex Cover, by showing that all graph problems that we will call "friendly" admit (1+ε)(1+\varepsilon)-approximate Turing kernels of polynomial size when parameterized by treewidth. We use this to obtain approximate Turing kernels for Vertex-Disjoint HH-packing for connected graphs HH, Clique Cover, Feedback Vertex Set and Edge Dominating Set

    Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

    Get PDF
    We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that computing a constant approximation for this parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree. Also we prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter

    09511 Abstracts Collection -- Parameterized complexity and approximation algorithms

    Get PDF
    From 14. 12. 2009 to 17. 12. 2009., the Dagstuhl Seminar 09511 ``Parameterized complexity and approximation algorithms \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    A Neighborhood-preserving Graph Summarization

    Full text link
    We introduce in this paper a new summarization method for large graphs. Our summarization approach retains only a user-specified proportion of the neighbors of each node in the graph. Our main aim is to simplify large graphs so that they can be analyzed and processed effectively while preserving as many of the node neighborhood properties as possible. Since many graph algorithms are based on the neighborhood information available for each node, the idea is to produce a smaller graph which can be used to allow these algorithms to handle large graphs and run faster while providing good approximations. Moreover, our compression allows users to control the size of the compressed graph by adjusting the amount of information loss that can be tolerated. The experiments conducted on various real and synthetic graphs show that our compression reduces considerably the size of the graphs. Moreover, we conducted several experiments on the obtained summaries using various graph algorithms and applications, such as node embedding, graph classification and shortest path approximations. The obtained results show interesting trade-offs between the algorithms runtime speed-up and the precision loss.Comment: 17 pages, 10 figure
    • …
    corecore