11,087 research outputs found

    Efficient LDPC Codes over GF(q) for Lossy Data Compression

    Full text link
    In this paper we consider the lossy compression of a binary symmetric source. We present a scheme that provides a low complexity lossy compressor with near optimal empirical performance. The proposed scheme is based on b-reduced ultra-sparse LDPC codes over GF(q). Encoding is performed by the Reinforced Belief Propagation algorithm, a variant of Belief Propagation. The computational complexity at the encoder is O(.n.q.log q), where is the average degree of the check nodes. For our code ensemble, decoding can be performed iteratively following the inverse steps of the leaf removal algorithm. For a sparse parity-check matrix the number of needed operations is O(n).Comment: 5 pages, 3 figure

    Delay Minimization for Instantly Decodable Network Coding in Persistent Channels with Feedback Intermittence

    Full text link
    In this paper, we consider the problem of minimizing the multicast decoding delay of generalized instantly decodable network coding (G-IDNC) over persistent forward and feedback erasure channels with feedback intermittence. In such an environment, the sender does not always receive acknowledgement from the receivers after each transmission. Moreover, both the forward and feedback channels are subject to persistent erasures, which can be modelled by a two state (good and bad states) Markov chain known as Gilbert-Elliott channel (GEC). Due to such feedback imperfections, the sender is unable to determine subsequent instantly decodable packets combination for all receivers. Given this harsh channel and feedback model, we first derive expressions for the probability distributions of decoding delay increments and then employ these expressions in formulating the minimum decoding problem in such environment as a maximum weight clique problem in the G-IDNC graph. We also show that the problem formulations in simpler channel and feedback models are special cases of our generalized formulation. Since this problem is NP-hard, we design a greedy algorithm to solve it and compare it to blind approaches proposed in literature. Through extensive simulations, our adaptive algorithm is shown to outperform the blind approaches in all situations and to achieve significant improvement in the decoding delay, especially when the channel is highly persisten
    • …
    corecore