1,803 research outputs found

    A CCA2 Secure Variant of the McEliece Cryptosystem

    Get PDF
    The McEliece public-key encryption scheme has become an interesting alternative to cryptosystems based on number-theoretical problems. Differently from RSA and ElGa- mal, McEliece PKC is not known to be broken by a quantum computer. Moreover, even tough McEliece PKC has a relatively big key size, encryption and decryption operations are rather efficient. In spite of all the recent results in coding theory based cryptosystems, to the date, there are no constructions secure against chosen ciphertext attacks in the standard model - the de facto security notion for public-key cryptosystems. In this work, we show the first construction of a McEliece based public-key cryptosystem secure against chosen ciphertext attacks in the standard model. Our construction is inspired by a recently proposed technique by Rosen and Segev

    Cryptography based on the Hardness of Decoding

    Get PDF
    This thesis provides progress in the fields of for lattice and coding based cryptography. The first contribution consists of constructions of IND-CCA2 secure public key cryptosystems from both the McEliece and the low noise learning parity with noise assumption. The second contribution is a novel instantiation of the lattice-based learning with errors problem which uses uniform errors

    Overcoming Bandwidth Limitations in Wireless Sensor Networks by Exploitation of Cyclic Signal Patterns: An Event-triggered Learning Approach

    Get PDF
    Wireless sensor networks are used in a wide range of applications, many of which require real-time transmission of the measurements. Bandwidth limitations result in limitations on the sampling frequency and number of sensors. This problem can be addressed by reducing the communication load via data compression and event-based communication approaches. The present paper focuses on the class of applications in which the signals exhibit unknown and potentially time-varying cyclic patterns. We review recently proposed event-triggered learning (ETL) methods that identify and exploit these cyclic patterns, we show how these methods can be applied to the nonlinear multivariable dynamics of three-dimensional orientation data, and we propose a novel approach that uses Gaussian process models. In contrast to other approaches, all three ETL methods work in real time and assure a small upper bound on the reconstruction error. The proposed methods are compared to several conventional approaches in experimental data from human subjects walking with a wearable inertial sensor network. They are found to reduce the communication load by 60–70%, which implies that two to three times more sensor nodes could be used at the same bandwidth
    • …
    corecore