751 research outputs found

    Backward adaptive pixel-based fast predictive motion estimation

    Get PDF

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Wyner-Ziv side information generation using a higher order piecewise trajectory temporal interpolation algorithm

    Get PDF
    Distributed video coding (DVC) reverses the traditional coding paradigm of complex encoders allied with basic decoding, to one where the computational cost is largely incurred by the decoder. This enables low-cost, resource-poor sensors to be used at the transmitter in various applications including multi-sensor surveillance. A key constraint governing DVC performance is the quality of side information (SI), a coarse representation of original video frames which are not available at the decoder. Techniques to generate SI have generally been based on linear temporal interpolation, though these do not always produce satisfactory SI quality especially in sequences exhibiting asymmetric (non-linear) motion. This paper presents a higher-order piecewise trajectory temporal interpolation (HOPTTI) algorithm for SI generation that quantitatively and perceptually affords better SI quality in comparison to existing temporal interpolation-based approaches

    Layer Selection in Progressive Transmission of Motion-Compensated JPEG2000 Video

    Get PDF
    MCJ2K (Motion-Compensated JPEG2000) is a video codec based on MCTF (Motion- Compensated Temporal Filtering) and J2K (JPEG2000). MCTF analyzes a sequence of images, generating a collection of temporal sub-bands, which are compressed with J2K. The R/D (Rate-Distortion) performance in MCJ2K is better than the MJ2K (Motion JPEG2000) extension, especially if there is a high level of temporal redundancy. MCJ2K codestreams can be served by standard JPIP (J2K Interactive Protocol) servers, thanks to the use of only J2K standard file formats. In bandwidth-constrained scenarios, an important issue in MCJ2K is determining the amount of data of each temporal sub-band that must be transmitted to maximize the quality of the reconstructions at the client side. To solve this problem, we have proposed two rate-allocation algorithms which provide reconstructions that are progressive in quality. The first, OSLA (Optimized Sub-band Layers Allocation), determines the best progression of quality layers, but is computationally expensive. The second, ESLA (Estimated-Slope sub-band Layers Allocation), is sub-optimal in most cases, but much faster and more convenient for real-time streaming scenarios. An experimental comparison shows that even when a straightforward motion compensation scheme is used, the R/D performance of MCJ2K competitive is compared not only to MJ2K, but also with respect to other standard scalable video codecs

    Depth-based Multi-View 3D Video Coding

    Get PDF

    Effective Video Encoding in Lossless and Near-lossless Modes

    Get PDF
    • …
    corecore