806 research outputs found

    A contrast-sensitive reversible visible image watermarking technique

    Get PDF
    A reversible (also called lossless, distortion-free, or invertible) visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to losslessly recover the original image. We transparently reveal the watermark image by overlapping it on a user-specified region of the host image through adaptively adjusting the pixel values beneath the watermark, depending on the human visual system-based scaling factors. In order to achieve reversibility, a reconstruction/ recovery packet, which is utilized to restore the watermarked area, is reversibly inserted into non-visibly-watermarked region. The packet is established according to the difference image between the original image and its approximate version instead of its visibly watermarked version so as to alleviate its overhead. For the generation of the approximation, we develop a simple prediction technique that makes use of the unaltered neighboring pixels as auxiliary information. The recovery packet is uniquely encoded before hiding so that the original watermark pattern can be reconstructed based on the encoded packet. In this way, the image recovery process is carried out without needing the availability of the watermark. In addition, our method adopts data compression for further reduction in the recovery packet size and improvement in embedding capacity. The experimental results demonstrate the superiority of the proposed scheme compared to the existing methods

    Vector-based Efficient Data Hiding in Encrypted Images via Multi-MSB Replacement

    Full text link
    As an essential technique for data privacy protection, reversible data hiding in encrypted images (RDHEI) methods have drawn intensive research interest in recent years. In response to the increasing demand for protecting data privacy, novel methods that perform RDHEI are continually being developed. We propose two effective multi-MSB (most significant bit) replacement-based approaches that yield comparably high data embedding capacity, improve overall processing speed, and enhance reconstructed images' quality. Our first method, Efficient Multi-MSB Replacement-RDHEI (EMR-RDHEI), obtains higher data embedding rates (DERs, also known as payloads) and better visual quality in reconstructed images when compared with many other state-of-the-art methods. Our second method, Lossless Multi-MSB Replacement-RDHEI (LMR-RDHEI), can losslessly recover original images after an information embedding process is performed. To verify the accuracy of our methods, we compared them with other recent RDHEI techniques and performed extensive experiments using the widely accepted BOWS-2 dataset. Our experimental results showed that the DER of our EMR-RDHEI method ranged from 1.2087 bit per pixel (bpp) to 6.2682 bpp with an average of 3.2457 bpp. For the LMR-RDHEI method, the average DER was 2.5325 bpp, with a range between 0.2129 bpp and 6.0168 bpp. Our results demonstrate that these methods outperform many other state-of-the-art RDHEI algorithms. Additionally, the multi-MSB replacement-based approach provides a clean design and efficient vectorized implementation.Comment: 14 pages; journa

    Detection of Motion Vector-Based Video Steganography by Adding or Subtracting One Motion Vector Value

    Get PDF
    In last decades the Steganography is an tremendous progress, at the same time there exist issues to detect the steganalysis in motion based video where the substance is reliably in motion conduct that makes that to detect it. Analyzing the difference between the rated motion value plays a crucial role that enables us to focus on difference between the locally optimal SAD and actual SAD after adding-or-subtracting-one operation on the motion value. Based on the motion vectors to play out the classification and extraction process at last, two features sets are been used based on the fact that most motion vectors are locally optimal for most video codec’s to complete this process. The conventional approaches announced the technique for proposed prevails to meet the requirement applications and detecting the steganalysis in videos compare in the literature

    Survey of the Use of Steganography over the Internet

    Get PDF
    This paper addressesthe use of Steganography over the Internet by terrorists. There were ru-mors in the newspapers that Steganography is being used to covert communication between terrorists, without presenting any scientific proof. Niels Provos and Peter Honeyman conducted an extensive Internet search where they analyzed over 2 million images and didn’t find a single hidden image. After this study the scientific community was divided: some believed that Niels Provos and Peter Honeyman was conclusive enough other did not. This paper describes what Steganography is and what can be used for, various Steganography techniques and also presents the studies made regarding the use of Steganography on the Internet.Steganography, Secret Communication, Information Hiding, Cryptography

    Data Security using Reversible Data Hiding with Optimal Value Transfer

    Get PDF
    In this paper a novel reversible data hiding algorithm is used which can recover image without any distortion. This algorithm uses zero or minimum points of an image and modifies the pixel. It is proved experimentally that the peak signal to noise ratio of the marked image generated by this method and the original image is guaranteed to be above 48 dB this lower bound of peak signal to noise ratio is much higher than all reversible data hiding technique present in the literature. Execution time of proposed system is short. The algorithm has been successfully applied to all types of images

    A Survey on Reversible Image Data Hiding Using the Hierarchical Block Embedding Technique

    Get PDF
    The use of graphics for data concealment has significantly advanced the fields of secure communication and identity verification. Reversible data hiding (RDH) involves hiding data within host media, such as images, while allowing for the recovery of the original cover. Various RDH approaches have been developed, including difference expansion, interpolation techniques, prediction, and histogram modification. However, these methods were primarily applied to plain photos. This study introduces a novel reversible image transformation technique called Block Hierarchical Substitution (BHS). BHS enhances the quality of encrypted images and enables lossless restoration of the secret image with a low Peak Signal-to-Noise Ratio (PSNR). The cover image is divided into non-overlapping blocks, and the pixel values within each block are encrypted using the modulo function. This ensures that the linear prediction difference in the block remains consistent before and after encryption, enabling independent data extraction without picture decryption. In order to address the challenges associated with secure multimedia data processing, such as data encryption during transmission and storage, this survey investigates the specific issues related to reversible data hiding in encrypted images (RDHEI). Our proposed solution aims to enhance security (low Mean Squared Error) and improve the PSNR value by applying the method to encrypted images

    A Brief Review of RIDH

    Get PDF
    The Reversible image data hiding (RIDH) is one of the novel approaches in the security field. In the highly sensitive domains like Medical, Military, Research labs, it is important to recover the cover image successfully, Hence, without applying the normal steganography, we can use RIDH to get the better result. Reversible data hiding has a advantage over image data hiding that it can give you double security surely
    corecore