381 research outputs found

    How good are detection proposals, really?

    Full text link
    Current top performing Pascal VOC object detectors employ detection proposals to guide the search for objects thereby avoiding exhaustive sliding window search across images. Despite the popularity of detection proposals, it is unclear which trade-offs are made when using them during object detection. We provide an in depth analysis of ten object proposal methods along with four baselines regarding ground truth annotation recall (on Pascal VOC 2007 and ImageNet 2013), repeatability, and impact on DPM detector performance. Our findings show common weaknesses of existing methods, and provide insights to choose the most adequate method for different settings

    Image Compression Using Hybrid Technique

    Get PDF
    The compression ratio of the study Hybrid approach may give better performance compared with the related methods. PSNR and SNR will be calculated to ensure the performance of the system. The PSNR value at the main subject area is equal for both the methods. The PSNR value at the background area is lower in Hybrid method which is acceptable, since the background area is not considered to be so important. The Hybrid method is appropriate for imagery with larger inconsequential background and certain level of loss is tolerable in the background of the image . Keywords: Image Compression , Hybrid Technique

    Quantitative Evaluation of Dense Skeletons for Image Compression

    Get PDF
    Skeletons are well-known descriptors used for analysis and processing of 2D binary images. Recently, dense skeletons have been proposed as an extension of classical skeletons as a dual encoding for 2D grayscale and color images. Yet, their encoding power, measured by the quality and size of the encoded image, and how these metrics depend on selected encoding parameters, has not been formally evaluated. In this paper, we fill this gap with two main contributions. First, we improve the encoding power of dense skeletons by effective layer selection heuristics, a refined skeleton pixel-chain encoding, and a postprocessing compression scheme. Secondly, we propose a benchmark to assess the encoding power of dense skeletons for a wide set of natural and synthetic color and grayscale images. We use this benchmark to derive optimal parameters for dense skeletons. Our method, called Compressing Dense Medial Descriptors (CDMD), achieves higher-compression ratios at similar quality to the well-known JPEG technique and, thereby, shows that skeletons can be an interesting option for lossy image encoding

    Wavelets and Imaging Informatics: A Review of the Literature

    Get PDF
    AbstractModern medicine is a field that has been revolutionized by the emergence of computer and imaging technology. It is increasingly difficult, however, to manage the ever-growing enormous amount of medical imaging information available in digital formats. Numerous techniques have been developed to make the imaging information more easily accessible and to perform analysis automatically. Among these techniques, wavelet transforms have proven prominently useful not only for biomedical imaging but also for signal and image processing in general. Wavelet transforms decompose a signal into frequency bands, the width of which are determined by a dyadic scheme. This particular way of dividing frequency bands matches the statistical properties of most images very well. During the past decade, there has been active research in applying wavelets to various aspects of imaging informatics, including compression, enhancements, analysis, classification, and retrieval. This review represents a survey of the most significant practical and theoretical advances in the field of wavelet-based imaging informatics
    • …
    corecore