1,803 research outputs found

    DRASIC: Distributed Recurrent Autoencoder for Scalable Image Compression

    Full text link
    We propose a new architecture for distributed image compression from a group of distributed data sources. The work is motivated by practical needs of data-driven codec design, low power consumption, robustness, and data privacy. The proposed architecture, which we refer to as Distributed Recurrent Autoencoder for Scalable Image Compression (DRASIC), is able to train distributed encoders and one joint decoder on correlated data sources. Its compression capability is much better than the method of training codecs separately. Meanwhile, the performance of our distributed system with 10 distributed sources is only within 2 dB peak signal-to-noise ratio (PSNR) of the performance of a single codec trained with all data sources. We experiment distributed sources with different correlations and show how our data-driven methodology well matches the Slepian-Wolf Theorem in Distributed Source Coding (DSC). To the best of our knowledge, this is the first data-driven DSC framework for general distributed code design with deep learning

    Database of audio records

    Get PDF
    Diplomka a prakticky castDiplome with partical part

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Optical network technologies for future digital cinema

    Get PDF
    Digital technology has transformed the information flow and support infrastructure for numerous application domains, such as cellular communications. Cinematography, traditionally, a film based medium, has embraced digital technology leading to innovative transformations in its work flow. Digital cinema supports transmission of high resolution content enabled by the latest advancements in optical communications and video compression. In this paper we provide a survey of the optical network technologies for supporting this bandwidth intensive traffic class. We also highlight the significance and benefits of the state of the art in optical technologies that support the digital cinema work flow
    corecore