461 research outputs found

    Empirical analysis of BWT-based lossless image compression

    Get PDF
    The Burrows-Wheeler Transformation (BWT) is a text transformation algorithm originally designed to improve the coherence in text data. This coherence can be exploited by compression algorithms such as run-length encoding or arithmetic coding. However, there is still a debate on its performance on images. Motivated by a theoretical analysis of the performance of BWT and MTF, we perform a detailed empirical study on the role of MTF in compressing images with the BWT. This research studies the compression performance of BWT on digital images using different predictors and context partitions. The major interest of the research is in finding efficient ways to make BWT suitable for lossless image compression.;This research studied three different approaches to improve the compression of image data by BWT. First, the idea of preprocessing the image data before sending it to the BWT compression scheme is studied by using different mapping and prediction schemes. Second, different variations of MTF were investigated to see which one works best for Image compression with BWT. Third, the concept of context partitioning for BWT output before it is forwarded to the next stage in the compression scheme.;For lossless image compression, this thesis proposes the removal of the MTF stage from the BWT compression pipeline and the usage of context partitioning method. The compression performance is further improved by using MED predictor on the image data along with the 8-bit mapping of the prediction residuals before it is processed by BWT.;This thesis proposes two schemes for BWT-based image coding, namely BLIC and BLICx, the later being based on the context-ordering property of the BWT. Our methods outperformed other text compression algorithms such as PPM, GZIP, direct BWT, and WinZip in compressing images. Final results showed that our methods performed better than the state of the art lossless image compression algorithms, such as JPEG-LS, JPEG2000, CALIC, EDP and PPAM on the natural images

    Optimal context quantization in lossless compression of image data sequences

    Get PDF

    Fast Autocorrelated Context Models for Data Compression

    Full text link
    A method is presented to automatically generate context models of data by calculating the data's autocorrelation function. The largest values of the autocorrelation function occur at the offsets or lags in the bitstream which tend to be the most highly correlated to any particular location. These offsets are ideal for use in predictive coding, such as predictive partial match (PPM) or context-mixing algorithms for data compression, making such algorithms more efficient and more general by reducing or eliminating the need for ad-hoc models based on particular types of data. Instead of using the definition of the autocorrelation function, which considers the pairwise correlations of data requiring O(n^2) time, the Weiner-Khinchin theorem is applied, quickly obtaining the autocorrelation as the inverse Fast Fourier transform of the data's power spectrum in O(n log n) time, making the technique practical for the compression of large data objects. The method is shown to produce the highest levels of performance obtained to date on a lossless image compression benchmark.Comment: v2 includes bibliograph

    Shape representation and coding of visual objets in multimedia applications — An overview

    Get PDF
    Emerging multimedia applications have created the need for new functionalities in digital communications. Whereas existing compression standards only deal with the audio-visual scene at a frame level, it is now necessary to handle individual objects separately, thus allowing scalable transmission as well as interactive scene recomposition by the receiver. The future MPEG-4 standard aims at providing compression tools addressing these functionalities. Unlike existing frame-based standards, the corresponding coding schemes need to encode shape information explicitly. This paper reviews existing solutions to the problem of shape representation and coding. Region and contour coding techniques are presented and their performance is discussed, considering coding efficiency and rate-distortion control capability, as well as flexibility to application requirements such as progressive transmission, low-delay coding, and error robustnes

    A Comparative Study on Improvement of Image Compression Method using Hybrid DCT - DWT Techniques with Huffman Encoding for Wireless Sensor Network Application

    Get PDF
    Nowadays, the demands on the usage of wireless network are increasing rapidly from year to year. Wireless network is a large scale of area where many nodes are connecting to each other to communicate using a device. Primarily, wireless network also tend to be as a link to transmit and receive any multimedia such as image, sound, video, document and etc. In order to receive the transmitted media correctly, most type of media must be compressed before being transmitted and decompressed after being received by the device or else the device used must have the ability to read the media in a compressed way. In this paper, a hybrid compression of Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) with Huffman encoding technique are proposed for Wireless Sensor Network (WSN) application. Data compression is very useful to remove the redundant data and reduce the size of image. After conducting a comprehensive observation, it is found that hybrid compression is suitable due to the process consist of the combination of multiple compression techniques which suits for Wireless Sensor Network’s application focusing on ZigBee platform

    Context based Coding of Quantized Alpha Planes for Video Objects

    Get PDF
    • …
    corecore