370 research outputs found

    Practical Full Resolution Learned Lossless Image Compression

    Full text link
    We propose the first practical learned lossless image compression system, L3C, and show that it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000. At the core of our method is a fully parallelizable hierarchical probabilistic model for adaptive entropy coding which is optimized end-to-end for the compression task. In contrast to recent autoregressive discrete probabilistic models such as PixelCNN, our method i) models the image distribution jointly with learned auxiliary representations instead of exclusively modeling the image distribution in RGB space, and ii) only requires three forward-passes to predict all pixel probabilities instead of one for each pixel. As a result, L3C obtains over two orders of magnitude speedups when sampling compared to the fastest PixelCNN variant (Multiscale-PixelCNN). Furthermore, we find that learning the auxiliary representation is crucial and outperforms predefined auxiliary representations such as an RGB pyramid significantly.Comment: Updated preprocessing and Table 1, see A.1 in supplementary. Code and models: https://github.com/fab-jul/L3C-PyTorc

    Entropy coder for audio signals

    Get PDF
    In the paper an effective entropy coder designed for coding of prediction errors of audio signals is presented. The coder is implemented inside a greater structure which signal modeling part is a lossless coding backward adaptation algorithm consisting of cascaded OLS and NLMS sections is presented. The technique performance is compared to that of 4 other lossless codecs, including MPEG-4 ALS one, and it is shown that indeed, the new method is the best one. The entropy coder is an advanced context adaptive Golomb one followed by two context adaptive arithmetic coders

    Virtually Lossless Compression of Astrophysical Images

    Get PDF
    We describe an image compression strategy potentially capable of preserving the scientific quality of astrophysical data, simultaneously allowing a consistent bandwidth reduction to be achieved. Unlike strictly lossless techniques, by which moderate compression ratios are attainable, and conventional lossy techniques, in which the mean square error of the decoded data is globally controlled by users, near-lossless methods are capable of locally constraining the maximum absolute error, based on user's requirements. An advanced lossless/near-lossless differential pulse code modulation (DPCM) scheme, recently introduced by the authors and relying on a causal spatial prediction, is adjusted to the specific characteristics of astrophysical image data (high radiometric resolution, generally low noise, etc.). The background noise is preliminarily estimated to drive the quantization stage for high quality, which is the primary concern in most of astrophysical applications. Extensive experimental results of lossless, near-lossless, and lossy compression of astrophysical images acquired by the Hubble space telescope show the advantages of the proposed method compared to standard techniques like JPEG-LS and JPEG2000. Eventually, the rationale of virtually lossless compression, that is, a noise-adjusted lossles/near-lossless compression, is highlighted and found to be in accordance with concepts well established for the astronomers' community

    Adaptive edge-based prediction for lossless image compression

    Get PDF
    Many lossless image compression methods have been suggested with established results hard to surpass. However there are some aspects that can be considered to improve the performance further. This research focuses on two-phase prediction-encoding method, separately studying each and suggesting new techniques.;In the prediction module, proposed Edge-Based-Predictor (EBP) and Least-Squares-Edge-Based-Predictor (LS-EBP) emphasizes on image edges and make predictions accordingly. EBP is a gradient based nonlinear adaptive predictor. EBP switches between prediction-rules based on few threshold parameters automatically determined by a pre-analysis procedure, which makes a first pass. The LS-EBP also uses these parameters, but optimizes the prediction for each pre-analysis assigned edge location, thus applying least-square approach only at the edge points.;For encoding module: a novel Burrows Wheeler Transform (BWT) inspired method is suggested, which performs better than applying the BWT directly on the images. We also present a context-based adaptive error modeling and encoding scheme. When coupled with the above-mentioned prediction schemes, the result is the best-known compression performance in the genre of compression schemes with same time and space complexity

    Kompresija slika bez gubitaka uz iskorištavanje tokovnog modela za izvođenje na višejezgrenim računalima

    Get PDF
    Image and video coding play a critical role in present multimedia systems ranging from entertainment to specialized applications such as telemedicine. Usually, they are hand–customized for every intended architecture in order to meet performance requirements. This approach is neither portable nor scalable. With the advent of multicores new challenges emerged for programmers related to both efficient utilization of additional resources and scalable performance. For image and video processing applications, streaming model of computation showed to be effective in tackling these challenges. In this paper, we report the efforts to improve the execution performance of the CBPC, our compute intensive lossless image compression algorithm described in [1]. The algorithm is based on highly adaptive and predictive modeling, outperforming many other methods in compression efficiency, although with increased complexity. We employ a high–level performance optimization approach which exploits streaming model for scalability and portability. We obtain this by detecting computationally demanding parts of the algorithm and implementing them in StreamIt, an architecture–independent stream language which goal is to improve programming productivity and parallelization efficiency by exposing the parallelism and communication pattern. We developed an interface that enables the integration and hosting of streaming kernels into the host application developed in general–purpose language.Postupci obrade slikovnih podataka su iznimno zastupljeni u postojećim multimedijskim sustavima, počev od zabavnih sustava pa do specijaliziranih aplikacija u telemedicini. Vrlo često, zbog svojih računskih zahtjeva, ovi programski odsječci su iznimno optimirani i to na niskoj razini, što predstavlja poteškoće u prenosivosti i skalabilnosti konačnog rješenja. Nadolaskom višejezgrenih računala pojavljuju se novi izazovi kao što su učinkovito iskorištavanje računskih jezgri i postizanje skalabilnosti rješenja obzirom na povećanje broja jezgri. U ovom radu prikazan je novi pristup poboljšanja izvedbenih performansi metode za kompresiju slika bez gubitaka CBPC koja se odlikuje adaptivnim modelom predviđanja koji omogućuje postizanje boljih stupnjeva kompresije uz povećanje računske složenosti [1]. Pristup koji je primjenjen sastoji se u implementaciji računski zahtjevnog predikcijskog modela u tokovnom programskom jeziku koji omogućuje paralelizaciju izvornog programa. Ovako projektiran predikcijski model može se iskoristiti kroz sučelje koje smo razvili a koje omogućuje pozivanje tokovnih računskih modula i njihovo paralelno izvođenje uz iskorištavanje više jezgri

    An overview of JPEG 2000

    Get PDF
    JPEG-2000 is an emerging standard for still image compression. This paper provides a brief history of the JPEG-2000 standardization process, an overview of the standard, and some description of the capabilities provided by the standard. Part I of the JPEG-2000 standard specifies the minimum compliant decoder, while Part II describes optional, value-added extensions. Although the standard specifies only the decoder and bitstream syntax, in this paper we describe JPEG-2000 from the point of view of encoding. We take this approach, as we believe it is more amenable to a compact description more easily understood by most readers.
    corecore