821 research outputs found

    Determination of Formant Features in Czech and Slovak for GMM Emotional Speech Classifier

    Get PDF
    The paper is aimed at determination of formant features (FF) which describe vocal tract characteristics. It comprises analysis of the first three formant positions together with their bandwidths and the formant tilts. Subsequently, the statistical evaluation and comparison of the FF was performed. This experiment was realized with the speech material in the form of sentences of male and female speakers expressing four emotional states (joy, sadness, anger, and a neutral state) in Czech and Slovak languages. The statistical distribution of the analyzed formant frequencies and formant tilts shows good differentiation between neutral and emotional styles for both voices. Contrary to it, the values of the formant 3-dB bandwidths have no correlation with the type of the speaking style or the type of the voice. These spectral parameters together with the values of the other speech characteristics were used in the feature vector for Gaussian mixture models (GMM) emotional speech style classifier that is currently developed. The overall mean classification error rate achieves about 18 %, and the best obtained error rate is 5 % for the sadness style of the female voice. These values are acceptable in this first stage of development of the GMM classifier that should be used for evaluation of the synthetic speech quality after applied voice conversion and emotional speech style transformation

    A Robust Method for Speech Emotion Recognition Based on Infinite Student’s t

    Get PDF
    Speech emotion classification method, proposed in this paper, is based on Student’s t-mixture model with infinite component number (iSMM) and can directly conduct effective recognition for various kinds of speech emotion samples. Compared with the traditional GMM (Gaussian mixture model), speech emotion model based on Student’s t-mixture can effectively handle speech sample outliers that exist in the emotion feature space. Moreover, t-mixture model could keep robust to atypical emotion test data. In allusion to the high data complexity caused by high-dimensional space and the problem of insufficient training samples, a global latent space is joined to emotion model. Such an approach makes the number of components divided infinite and forms an iSMM emotion model, which can automatically determine the best number of components with lower complexity to complete various kinds of emotion characteristics data classification. Conducted over one spontaneous (FAU Aibo Emotion Corpus) and two acting (DES and EMO-DB) universal speech emotion databases which have high-dimensional feature samples and diversiform data distributions, the iSMM maintains better recognition performance than the comparisons. Thus, the effectiveness and generalization to the high-dimensional data and the outliers are verified. Hereby, the iSMM emotion model is verified as a robust method with the validity and generalization to outliers and high-dimensional emotion characters

    Mitigating Group Bias in Federated Learning for Heterogeneous Devices

    Full text link
    Federated Learning is emerging as a privacy-preserving model training approach in distributed edge applications. As such, most edge deployments are heterogeneous in nature i.e., their sensing capabilities and environments vary across deployments. This edge heterogeneity violates the independence and identical distribution (IID) property of local data across clients and produces biased global models i.e. models that contribute to unfair decision-making and discrimination against a particular community or a group. Existing bias mitigation techniques only focus on bias generated from label heterogeneity in non-IID data without accounting for domain variations due to feature heterogeneity and do not address global group-fairness property. Our work proposes a group-fair FL framework that minimizes group-bias while preserving privacy and without resource utilization overhead. Our main idea is to leverage average conditional probabilities to compute a cross-domain group \textit{importance weights} derived from heterogeneous training data to optimize the performance of the worst-performing group using a modified multiplicative weights update method. Additionally, we propose regularization techniques to minimize the difference between the worst and best-performing groups while making sure through our thresholding mechanism to strike a balance between bias reduction and group performance degradation. Our evaluation of human emotion recognition and image classification benchmarks assesses the fair decision-making of our framework in real-world heterogeneous settings

    Speech-based recognition of self-reported and observed emotion in a dimensional space

    Get PDF
    The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance

    DeepEar: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning

    Get PDF
    Microphones are remarkably powerful sensors of human behavior and context. However, audio sensing is highly susceptible to wild fluctuations in accuracy when used in diverse acoustic environments (such as, bedrooms, vehicles, or cafes), that users encounter on a daily basis. Towards addressing this challenge, we turn to the field of deep learning; an area of machine learning that has radically changed related audio modeling domains like speech recognition. In this paper, we present DeepEar – the first mobile audio sensing framework built from coupled Deep Neural Networks (DNNs) that simultaneously perform common audio sensing tasks. We train DeepEar with a large-scale dataset including unlabeled data from 168 place visits. The resulting learned model, involving 2.3M parameters, enables DeepEar to significantly increase inference robustness to background noise beyond conventional approaches present in mobile devices. Finally, we show DeepEar is feasible for smartphones by building a cloud-free DSP-based prototype that runs continuously, using only 6% of the smartphone’s battery dailyThis is the author accepted manuscript. The final version is available from ACM via http://dx.doi.org/10.1145/2750858.280426

    Speech and natural language processing for the assessment of customer satisfaction and neuro-degenerative diseases

    Get PDF
    ABSTRACT: Nowadays, the interest in the automatic analysis of speech and text in different scenarios have been increasing. Currently, acoustic analysis is frequently used to extract non-verbal information related to para-linguistic aspects such as articulation and prosody. The linguistic analysis focuses on capturing verbal information from written sources, which can be suitable to evaluate customer satisfaction, or in health-care applications to assess the state of patients under depression or other cognitive states. In the case of call-centers many of the speech recordings collected are related to the opinion of the customers in different industry sectors. Only a small proportion of these calls are evaluated, whereby these processes can be automated using acoustic and linguistic analysis. In the assessment of neuro-degenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), the symptoms are progressive, directly linked to dementia, cognitive decline, and motor impairments. This implies a continuous evaluation of the neurological state since the patients become dependent and need intensive care, showing a decrease of the ability from individual activities of daily life. This thesis proposes methodologies for acoustic and linguistic analyses in different scenarios related to customer satisfaction, cognitive disorders in AD, and depression in PD. The experiments include the evaluation of customer satisfaction, the assessment of genetic AD, linguistic analysis to discriminate PD, depression assessment in PD, and user state modeling based on the arousal-plane for the evaluation of customer satisfaction, AD, and depression in PD. The acoustic features are mainly focused on articulation and prosody analyses, while linguistic features are based on natural language processing techniques. Deep learning approaches based on convolutional and recurrent neural networks are also considered in this thesis
    • …
    corecore