1,190 research outputs found

    A Convex Relaxation for Weakly Supervised Classifiers

    Full text link
    This paper introduces a general multi-class approach to weakly supervised classification. Inferring the labels and learning the parameters of the model is usually done jointly through a block-coordinate descent algorithm such as expectation-maximization (EM), which may lead to local minima. To avoid this problem, we propose a cost function based on a convex relaxation of the soft-max loss. We then propose an algorithm specifically designed to efficiently solve the corresponding semidefinite program (SDP). Empirically, our method compares favorably to standard ones on different datasets for multiple instance learning and semi-supervised learning as well as on clustering tasks.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Fidelity-Weighted Learning

    Full text link
    Training deep neural networks requires many training samples, but in practice training labels are expensive to obtain and may be of varying quality, as some may be from trusted expert labelers while others might be from heuristics or other sources of weak supervision such as crowd-sourcing. This creates a fundamental quality versus-quantity trade-off in the learning process. Do we learn from the small amount of high-quality data or the potentially large amount of weakly-labeled data? We argue that if the learner could somehow know and take the label-quality into account when learning the data representation, we could get the best of both worlds. To this end, we propose "fidelity-weighted learning" (FWL), a semi-supervised student-teacher approach for training deep neural networks using weakly-labeled data. FWL modulates the parameter updates to a student network (trained on the task we care about) on a per-sample basis according to the posterior confidence of its label-quality estimated by a teacher (who has access to the high-quality labels). Both student and teacher are learned from the data. We evaluate FWL on two tasks in information retrieval and natural language processing where we outperform state-of-the-art alternative semi-supervised methods, indicating that our approach makes better use of strong and weak labels, and leads to better task-dependent data representations.Comment: Published as a conference paper at ICLR 201

    beta-risk: a New Surrogate Risk for Learning from Weakly Labeled Data

    No full text
    International audienceDuring the past few years, the machine learning community has paid attention to developing new methods for learning from weakly labeled data. This field covers different settings like semi-supervised learning, learning with label proportions, multi-instance learning, noise-tolerant learning, etc. This paper presents a generic framework to deal with these weakly labeled scenarios. We introduce the \betarisk as a generalized formulation of the standard empirical risk based on surrogate margin-based loss functions. This risk allows us to express the reliability on the labels and to derive different kinds of learning algorithms. We specifically focus on SVMs and propose a soft margin \betasvm algorithm which behaves better that the state of the art
    • …
    corecore