5,007 research outputs found

    On consistency maintenance in service discovery

    Get PDF
    Communication and node failures degrade the ability of a service discovery protocol to ensure Users receive the correct service information when the service changes. We propose that service discovery protocols employ a set of recovery techniques to recover from failures and regain consistency. We use simulations to show that the type of recovery technique a protocol uses significantly impacts the performance. We benchmark the performance of our own service discovery protocol, FRODO against the performance of first generation service discovery protocols, Jini and UPnP during increasing communication and node failures. The results show that FRODO has the best overall consistency maintenance performance

    The Performance of a Second Generation Service Discovery Protocol In Response to Message Loss

    Get PDF
    We analyze the behavior of FRODO, a second generation service discovery protocol, in response to message loss in the network. Earlier protocols, like UPnP and Jini rely on underlying network layers to enhance their failure recovery. A comparison with UPnP and Jini shows that FRODO performs more efficiently in maintaining consistency, with shorter latency, not relying on lower network layers for robustness and therefore functions correctly on a simple lightweight protocol stack

    Design of a shared whiteboard component for multimedia conferencing

    Get PDF
    This paper reports on the development of a framework for multimedia applications in the domain of tele-education. The paper focuses on the protocol design of a specific component of the framework, namely a shared whiteboard application. The relationship of this component with other components of the framework is also discussed. A salient feature of the framework is that it uses an advanced ATM-based network service. The design of the shared whiteboard component is considered representative for the design as a whole, and is used to illustrate how a flexible protocol architecture utilizing innovative network functions and satisfying demanding user requirements can be developed

    PCODE: an efficient and reliable collective communication protocol for unreliable broadcast domain

    Get PDF
    Existing programming environments for clusters are typically built on top of a point-to-point communication layer (send and receive) over local area networks (LANs) and, as a result, suffer from poor performance in the collective communication part. For example, a broadcast that is implemented using a TCP/IP protocol (which is a point-to-point protocol) over a LAN is obviously inefficient as it is not utilizing the fact that the LAN is a broadcast medium. We have observed that the main difference between a distributed computing paradigm and a message passing parallel computing paradigm is that, in a distributed environment the activity of every processor is independent while in a parallel environment the collection of the user-communication layers in the processors can be modeled as a single global program. We have formalized the requirements by defining the notion of a correct global program. This notion provides a precise specification of the interface between the transport layer and the user-communication layer. We have developed PCODE, a new communication protocol that is driven by a global program and proved its correctness. We have implemented the PCODE protocol on a collection of IBM RS/6000 workstations and on a collection of Silicon Graphics Indigo workstations, both communicating via UDP broadcast. The experimental results we obtained indicate that the performance advantage of PCODE over the current point-to-point approach (TCP) can be as high as an order of magnitude on a cluster of 16 workstations

    Multiple-Tree Push-based Overlay Streaming

    Full text link
    Multiple-Tree Overlay Streaming has attracted a great amount of attention from researchers in the past years. Multiple-tree streaming is a promising alternative to single-tree streaming in terms of node dynamics and load balancing, among others, which in turn addresses the perceived video quality by the streaming user on node dynamics or when heterogeneous nodes join the network. This article presents a comprehensive survey of the different aproaches and techniques used in this research area. In this paper we identify node-disjointness as the property most approaches aim to achieve. We also present an alternative technique which does not try to achieve this but does local optimizations aiming global optimizations. Thus, we identify this property as not being absolute necessary for creating robust and heterogeneous multi-tree overlays. We identify two main design goals: robustness and support for heterogeneity, and classify existing approaches into these categories as their main focus

    Reliable multicast transport by satellite: a hybrid satellite/terrestrial solution with erasure codes

    Get PDF
    Geostationary satellites are an efficient way to provide a large scale multipoint communication service. In the context of reliable multicast communications, a new hybrid satellite/terrestrial approach is proposed. It aims at reducing the overall communication cost using satellite broadcasting only when enough receivers are present, and terrestrial transmissions otherwise. This approach has been statistically evaluated for a particular cost function and seems interesting. Then since the hybrid approach relies on Forward Error Correction, several practical aspects of MDS codes and LDPC codes are investigated in order to select a code

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    • 

    corecore