213 research outputs found

    Loosely Coupled Joint Driven by SMA Coil Actuators”,

    Get PDF
    Abstract-We introduce a robotic prototype of an arm with a loosely coupled joint, modeled on the human joint. A viscoelastic object functions as cartilage and soft actuators as muscles. First, we show that although viscoelastic object affords smooth movement owing to shift in the center of rotation, the repeat accuracy of the joint is poor under open-loop control. The repeat accuracy was much improved by visual feedback. Under P control, the prototype was shown to be highly robust against mechanical disturbance owing to its good mechanical compliance

    Adaptive Multi-Functional Space Systems for Micro-Climate Control

    Get PDF
    This report summarizes the work done during the Adaptive Multifunctional Systems for Microclimate Control Study held at the Caltech Keck Institute for Space Studies (KISS) in 2014-2015. Dr. Marco Quadrelli (JPL), Dr. James Lyke (AFRL), and Prof. Sergio Pellegrino (Caltech) led the Study, which included two workshops: the first in May of 2014, and another in February of 2015. The Final Report of the Study presented here describes the potential relevance of adaptive multifunctional systems for microclimate control to the missions outlined in the 2010 NRC Decadal Survey. The objective of the Study was to adapt the most recent advances in multifunctional reconfigurable and adaptive structures to enable a microenvironment control to support space exploration in extreme environments (EE). The technical goal was to identify the most efficient materials, architectures, structures and means of deployment/reconfiguration, system autonomy and energy management solutions needed to optimally project/generate a micro-environment around space assets. For example, compact packed thin-layer reflective structures unfolding to large areas can reflect solar energy, warming and illuminating assets such as exploration rovers on Mars or human habitats on the Moon. This novel solution is called an energy-projecting multifunctional system (EPMFS), which are composed of Multifunctional Systems (MFS) and Energy-Projecting Systems (EPS)

    Soft manipulators and grippers: A review

    Get PDF
    Soft robotics is a growing area of research which utilizes the compliance and adaptability of soft structures to develop highly adaptive robotics for soft interactions. One area in which soft robotics has the ability to make significant impact is in the development of soft grippers and manipulators. With an increased requirement for automation, robotics systems are required to perform task in unstructured and not well defined environments; conditions which conventional rigid robotics are not best suited. This requires a paradigm shift in the methods and materials used to develop robots such that they can adapt to and work safely in human environments. One solution to this is soft robotics, which enables soft interactions with the surroundings while maintaining the ability to apply significant force. This review paper assesses the current materials and methods, actuation methods and sensors which are used in the development of soft manipulators. The achievements and shortcomings of recent technology in these key areas are evaluated, and this paper concludes with a discussion on the potential impacts of soft manipulators on industry and society

    The 31st Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the 31st Aerospace Mechanisms Symposium are reported. Topics covered include: robotics, deployment mechanisms, bearings, actuators, scanners, boom and antenna release, and test equipment. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society

    The 29th Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft

    The 24th Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the symposium are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, and other mechanisms for large space structures
    • …
    corecore