453 research outputs found

    Tiling Optimization For Nested Loops On Gpus

    Get PDF
    Optimizing nested loops has been considered as an important topic and widely studied in parallel programming. With the development of GPU architectures, the performance of these computations can be significantly boosted with the massively parallel hardware. General matrix-matrix multiplication is a typical example where executing such an algorithm on GPUs outperforms the performance obtained on other multicore CPUs. However, achieving ideal performance on GPUs usually requires a lot of human effort to manage the massively parallel computation resources. Therefore, the efficient implementation of optimizing nested loops on GPUs became a popular topic in recent years. We present our work based on the tiling strategy in this dissertation to address three kinds of popular problems. Different kinds of computations bring in different latency issues where dependencies in the computation may result in insufficient parallelism and the performance of computations without dependencies may be degraded due to intensive memory accesses. In this thesis, we tackle the challenges for each kind of problem and believe that other computations performed in nested loops can also benefit from the presented techniques. We improve a parallel approximation algorithm for the problem of scheduling jobs on parallel identical machines to minimize makespan with a high-dimensional tiling method. The algorithm is designed and optimized for solving this kind of problem efficiently on GPUs. Because the algorithm is based on a higher-dimensional dynamic programming approach, where dimensionality refers to the number of variables in the dynamic programming equation characterizing the problem, the existing implementation suffers from the pain of dimensionality and cannot fully utilize GPU resources. We design a novel data-partitioning technique to accelerate the higher-dimensional dynamic programming component of the algorithm. Both the load imbalance and exceeding memory capacity issues are addressed in our GPU solution. We present performance results to demonstrate how our proposed design improves the GPU utilization and makes it possible to solve large higher-dimensional dynamic programming problems within the limited GPU memory. Experimental results show that the GPU implementation achieves up to 25X speedup compared to the best existing OpenMP implementation. In addition, we focus on optimizing wavefront parallelism on GPUs. Wavefront parallelism is a well-known technique for exploiting the concurrency of applications that execute nested loops with uniform data dependencies. Recent research on such applications, which range from sequence alignment tools to partial differential equation solvers, has used GPUs to benefit from the massively parallel computing resources. Wavefront parallelism faces the load imbalance issue because the parallelism is passing along the diagonal. The tiling method has been introduced as a popular solution to address this issue. However, the use of hyperplane tiles increases the cost of synchronization and leads to poor data locality. In this paper, we present a highly optimized implementation of the wavefront parallelism technique that harnesses the GPU architecture. A balanced workload and maximum resource utilization are achieved with an extremely low synchronization overhead. We design the kernel configuration to significantly reduce the minimum number of synchronizations required and also introduce an inter-block lock to minimize the overhead of each synchronization. We evaluate the performance of our proposed technique for four different applications: Sequence Alignment, Edit Distance, Summed-Area Table, and 2DSOR. The performance results demonstrate that our method achieves speedups of up to six times compared to the previous best-known hyperplane tiling-based GPU implementation. Finally, we extend the hyperplane tiling to high order 2D stencil computations. Unlike wavefront parallelism that has dependence in the spatial dimension, dependence remains only across two adjacent time steps along the temporal dimension in stencil computations. Even if the no-dependence property significantly increases the parallelism obtained in the spatial dimensions, full parallelism may not be efficient on GPUs. Due to the limited cache capacity owned by each streaming multiprocessor, full parallelism can be obtained on global memory only, which has high latency to access. Therefore, the tiling technique can be applied to improve the memory efficiency by caching the small tiled blocks. Because the widely studied tiling methods, like overlapped tiling and split tiling, have considerable computation overhead caused by load imbalance or extra operations, we propose a time skewed tiling method, which is designed upon the GPU architecture. We work around the serialized computation issue and coordinate the intra-tile parallelism and inter-tile parallelism to minimize the load imbalance caused by pipelined processing. Moreover, we address the high-order stencil computations in our development, which has not been comprehensively studied. The proposed method achieves up to 3.5X performance improvement when the stencil computation is performed on a Moore neighborhood pattern

    A Survey of Techniques for Architecting TLBs

    Get PDF
    “Translation lookaside buffer” (TLB) caches virtual to physical address translation information and is used in systems ranging from embedded devices to high-end servers. Since TLB is accessed very frequently and a TLB miss is extremely costly, prudent management of TLB is important for improving performance and energy efficiency of processors. In this paper, we present a survey of techniques for architecting and managing TLBs. We characterize the techniques across several dimensions to highlight their similarities and distinctions. We believe that this paper will be useful for chip designers, computer architects and system engineers

    FPGA implementation of a Cholesky algorithm for a shared-memory multiprocessor architecture

    Get PDF
    Solving a system of linear equations is a key problem in the field of engineering and science. Matrix factorization is a key component of many methods used to solve such equations. However, the factorization process is very time consuming, so these problems have traditionally been targeted for parallel machines rather than sequential ones. Nevertheless, commercially available supercomputers are expensive and only large institutions have the resources to purchase them or use them. Hence, efforts are on to develop more affordable alternatives. This thesis presents one such approach. The work presented here is an implementation of a parallel version of the Cholesky matrix factorization algorithm on a single-chip multiprocessor built on an APEX20K series FPGA developed by Altera. This multiprocessor system uses an asymmetric, shared-memory MIMD architecture, built using a configurable processor core called Nios, which was also developed by Altera. The whole system was developed on Altera\u27s SOPC Development Kit using the Quartus 11 development environment. The Cholesky algorithm is based on an algorithm described in George, et al. [9]. The key features of this algorithm are that it is scalable and uses a queue of tasks approach [9], which ensures dynamic load-balancing among the processing elements. The implementation also assumes dense matrices in the input. Timing, speedup and efficiency results based on experiments run on uniprocessor and multiprocessor implementations are also presented

    MULTI-OBJECTIVE DESIGN AUTOMATION FOR RECONFIGURABLE MULTI-PROCESSOR SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical Applications

    Get PDF
    High performance, low power multiprocessor/multibank memory system requires a compiler that provides efficient data partitioning and mapping procedures. This paper introduced two compiler techniques for the data mapping to multibank memory, since data mapping is still an open problem and needs a better solution. The multibank memory can be consisted of volatile and non-volatile memory components to support ultra-low powered wearable devices. This hybrid memory system including volatile and non-volatile memory components yields higher complexity to map data onto it. To efficiently solve this mapping problem, we formulate it to a simple decision problem. Based on the problem definition, we proposed two efficient algorithms to determine the placement of data to the multibank memory. The proposed techniques consider the characteristic of the non-volatile memory that its write operation consumes more energy than the same operation of a volatile memory even though it provides ultra-low operation power and nearly zero leakage current. The proposed technique solves this negative effect of non-volatile memory by using efficient data placement technique and hybrid memory architecture. In experimental section, the result shows that the proposed techniques improve energy saving up to 59.5% for the hybrid multibank memory architecture

    ENERGY-AWARE OPTIMIZATION FOR EMBEDDED SYSTEMS WITH CHIP MULTIPROCESSOR AND PHASE-CHANGE MEMORY

    Get PDF
    Over the last two decades, functions of the embedded systems have evolved from simple real-time control and monitoring to more complicated services. Embedded systems equipped with powerful chips can provide the performance that computationally demanding information processing applications need. However, due to the power issue, the easy way to gain increasing performance by scaling up chip frequencies is no longer feasible. Recently, low-power architecture designs have been the main trend in embedded system designs. In this dissertation, we present our approaches to attack the energy-related issues in embedded system designs, such as thermal issues in the 3D chip multiprocessor (CMP), the endurance issue in the phase-change memory(PCM), the battery issue in the embedded system designs, the impact of inaccurate information in embedded system, and the cloud computing to move the workload to remote cloud computing facilities. We propose a real-time constrained task scheduling method to reduce peak temperature on a 3D CMP, including an online 3D CMP temperature prediction model and a set of algorithm for scheduling tasks to different cores in order to minimize the peak temperature on chip. To address the challenging issues in applying PCM in embedded systems, we propose a PCM main memory optimization mechanism through the utilization of the scratch pad memory (SPM). Furthermore, we propose an MLC/SLC configuration optimization algorithm to enhance the efficiency of the hybrid DRAM + PCM memory. We also propose an energy-aware task scheduling algorithm for parallel computing in mobile systems powered by batteries. When scheduling tasks in embedded systems, we make the scheduling decisions based on information, such as estimated execution time of tasks. Therefore, we design an evaluation method for impacts of inaccurate information on the resource allocation in embedded systems. Finally, in order to move workload from embedded systems to remote cloud computing facility, we present a resource optimization mechanism in heterogeneous federated multi-cloud systems. And we also propose two online dynamic algorithms for resource allocation and task scheduling. We consider the resource contention in the task scheduling

    Hard Real Time and Mixed Time Criticality on Off-The-Shelf Embedded Multi-Cores

    Get PDF
    International audienceThe paper describes a pragmatic solution to the parallel execution of hard real-time tasks on off-the-shelf embedded multiprocessors. We propose a simple timing isolation protocol allowing computational tasks to communicate with hard real-time ones. Excellent parallel resource utilization can be achieved while preserving timing compositionality. An extension to a synchronous language enables the correct-by-construction compilation to efficient parallel code. We do not explicitly address certification issues at this stage, yet our approach is designed to enable full system certification at the highest safety standards, such as SIL 4 in IEC 61508 or DAL A in DO-178B
    corecore