14,844 research outputs found

    MaestROB: A Robotics Framework for Integrated Orchestration of Low-Level Control and High-Level Reasoning

    Full text link
    This paper describes a framework called MaestROB. It is designed to make the robots perform complex tasks with high precision by simple high-level instructions given by natural language or demonstration. To realize this, it handles a hierarchical structure by using the knowledge stored in the forms of ontology and rules for bridging among different levels of instructions. Accordingly, the framework has multiple layers of processing components; perception and actuation control at the low level, symbolic planner and Watson APIs for cognitive capabilities and semantic understanding, and orchestration of these components by a new open source robot middleware called Project Intu at its core. We show how this framework can be used in a complex scenario where multiple actors (human, a communication robot, and an industrial robot) collaborate to perform a common industrial task. Human teaches an assembly task to Pepper (a humanoid robot from SoftBank Robotics) using natural language conversation and demonstration. Our framework helps Pepper perceive the human demonstration and generate a sequence of actions for UR5 (collaborative robot arm from Universal Robots), which ultimately performs the assembly (e.g. insertion) task.Comment: IEEE International Conference on Robotics and Automation (ICRA) 2018. Video: https://www.youtube.com/watch?v=19JsdZi0TW

    Abmash: Mashing Up Legacy Web Applications by Automated Imitation of Human Actions

    Get PDF
    Many business web-based applications do not offer applications programming interfaces (APIs) to enable other applications to access their data and functions in a programmatic manner. This makes their composition difficult (for instance to synchronize data between two applications). To address this challenge, this paper presents Abmash, an approach to facilitate the integration of such legacy web applications by automatically imitating human interactions with them. By automatically interacting with the graphical user interface (GUI) of web applications, the system supports all forms of integrations including bi-directional interactions and is able to interact with AJAX-based applications. Furthermore, the integration programs are easy to write since they deal with end-user, visual user-interface elements. The integration code is simple enough to be called a "mashup".Comment: Software: Practice and Experience (2013)

    ClouNS - A Cloud-native Application Reference Model for Enterprise Architects

    Full text link
    The capability to operate cloud-native applications can generate enormous business growth and value. But enterprise architects should be aware that cloud-native applications are vulnerable to vendor lock-in. We investigated cloud-native application design principles, public cloud service providers, and industrial cloud standards. All results indicate that most cloud service categories seem to foster vendor lock-in situations which might be especially problematic for enterprise architectures. This might sound disillusioning at first. However, we present a reference model for cloud-native applications that relies only on a small subset of well standardized IaaS services. The reference model can be used for codifying cloud technologies. It can guide technology identification, classification, adoption, research and development processes for cloud-native application and for vendor lock-in aware enterprise architecture engineering methodologies

    User Applications Driven by the Community Contribution Framework MPContribs in the Materials Project

    Full text link
    This work discusses how the MPContribs framework in the Materials Project (MP) allows user-contributed data to be shown and analyzed alongside the core MP database. The Materials Project is a searchable database of electronic structure properties of over 65,000 bulk solid materials that is accessible through a web-based science-gateway. We describe the motivation for enabling user contributions to the materials data and present the framework's features and challenges in the context of two real applications. These use-cases illustrate how scientific collaborations can build applications with their own "user-contributed" data using MPContribs. The Nanoporous Materials Explorer application provides a unique search interface to a novel dataset of hundreds of thousands of materials, each with tables of user-contributed values related to material adsorption and density at varying temperature and pressure. The Unified Theoretical and Experimental x-ray Spectroscopy application discusses a full workflow for the association, dissemination and combined analyses of experimental data from the Advanced Light Source with MP's theoretical core data, using MPContribs tools for data formatting, management and exploration. The capabilities being developed for these collaborations are serving as the model for how new materials data can be incorporated into the Materials Project website with minimal staff overhead while giving powerful tools for data search and display to the user community.Comment: 12 pages, 5 figures, Proceedings of 10th Gateway Computing Environments Workshop (2015), to be published in "Concurrency in Computation: Practice and Experience

    Interoperability standards for cloud architecture

    Get PDF
    Enabling cloud infrastructures to evolve into a transparent platform raises interoperability issues. Interoperability requires standard data models and communication technologies compatible with the existing Internet infrastructure. To reduce vendor lock-in situations, cloud computing must implement common strategies regarding standards, interoperability and portability. Open standards are of critical importance and need to be embedded into interoperability solutions. Interoperability is determined at the data level as well as the service level. Relevant modelling standards and integration solutions shall be analysed in the context of clouds

    Programming patterns and development guidelines for Semantic Sensor Grids (SemSorGrid4Env)

    No full text
    The web of Linked Data holds great potential for the creation of semantic applications that can combine self-describing structured data from many sources including sensor networks. Such applications build upon the success of an earlier generation of 'rapidly developed' applications that utilised RESTful APIs. This deliverable details experience, best practice, and design patterns for developing high-level web-based APIs in support of semantic web applications and mashups for sensor grids. Its main contributions are a proposal for combining Linked Data with RESTful application development summarised through a set of design principles; and the application of these design principles to Semantic Sensor Grids through the development of a High-Level API for Observations. These are supported by implementations of the High-Level API for Observations in software, and example semantic mashups that utilise the API

    SDN Architecture and Southbound APIs for IPv6 Segment Routing Enabled Wide Area Networks

    Full text link
    The SRv6 architecture (Segment Routing based on IPv6 data plane) is a promising solution to support services like Traffic Engineering, Service Function Chaining and Virtual Private Networks in IPv6 backbones and datacenters. The SRv6 architecture has interesting scalability properties as it reduces the amount of state information that needs to be configured in the nodes to support the network services. In this paper, we describe the advantages of complementing the SRv6 technology with an SDN based approach in backbone networks. We discuss the architecture of a SRv6 enabled network based on Linux nodes. In addition, we present the design and implementation of the Southbound API between the SDN controller and the SRv6 device. We have defined a data-model and four different implementations of the API, respectively based on gRPC, REST, NETCONF and remote Command Line Interface (CLI). Since it is important to support both the development and testing aspects we have realized an Intent based emulation system to build realistic and reproducible experiments. This collection of tools automate most of the configuration aspects relieving the experimenter from a significant effort. Finally, we have realized an evaluation of some performance aspects of our architecture and of the different variants of the Southbound APIs and we have analyzed the effects of the configuration updates in the SRv6 enabled nodes

    Interoperability and FAIRness through a novel combination of Web technologies

    Get PDF
    Data in the life sciences are extremely diverse and are stored in a broad spectrum of repositories ranging from those designed for particular data types (such as KEGG for pathway data or UniProt for protein data) to those that are general-purpose (such as FigShare, Zenodo, Dataverse or EUDAT). These data have widely different levels of sensitivity and security considerations. For example, clinical observations about genetic mutations in patients are highly sensitive, while observations of species diversity are generally not. The lack of uniformity in data models from one repository to another, and in the richness and availability of metadata descriptions, makes integration and analysis of these data a manual, time-consuming task with no scalability. Here we explore a set of resource-oriented Web design patterns for data discovery, accessibility, transformation, and integration that can be implemented by any general- or special-purpose repository as a means to assist users in finding and reusing their data holdings. We show that by using off-the-shelf technologies, interoperability can be achieved atthe level of an individual spreadsheet cell. We note that the behaviours of this architecture compare favourably to the desiderata defined by the FAIR Data Principles, and can therefore represent an exemplar implementation of those principles. The proposed interoperability design patterns may be used to improve discovery and integration of both new and legacy data, maximizing the utility of all scholarly outputs
    • 

    corecore