12 research outputs found

    Looking for Hypergiants in PeeringDB

    Get PDF

    A first look at the misuse and abuse of the IPv4 Transfer Market

    Get PDF
    The depletion of the unallocated address space in combination with the slow pace of IPv6 deployment have given rise to the IPv4 transfer market, namely the trading of allocated IPv4 prefixes between ASes. While RIRs have established detailed policies in an effort to regulate the IPv4 transfer market for malicious networks such as spammers and bulletproof ASes, IPv4 transfers pose an opportunity to bypass reputational penalties of abusive behaviour since they can obtain "clean" address space or offload blacklisted address space. Additionally, IP transfers create a window of uncertainty about legitimate ownership of prefixes, which adversaries to hijack parts of the transferred address space. In this paper, we provide the first detailed study of how transferred IPv4 prefixes are misused in the wild by synthesizing an array of longitudinal IP blacklists and lists of prefix hijacking incidents. Our findings yield evidence that the transferred network blocks are used by malicious networks to address botnets and fraudulent sites in much higher rates compared to non-transferred addresses, while the timing of the attacks indicates efforts to evade filtering mechanisms

    How Biased is our Validation (Data) for {AS} Relationships?

    Get PDF

    BGP-Multipath Routing in the Internet

    Get PDF
    BGP-Multipath (BGP-M) is a multipath routing technique for load balancing. Distinct from other techniques deployed at a router inside an Autonomous System (AS), BGP-M is deployed at a border router that has installed multiple inter-domain border links to a neighbour AS. It uses the equal-cost multi-path (ECMP) function of a border router to share traffic to a destination prefix on different border links. Despite recent research interests in multipath routing, there is little study on BGP-M. Here we provide the first measurement and a comprehensive analysis of BGP-M routing in the Internet. We extracted information on BGP-M from query data collected from Looking Glass (LG) servers. We revealed that BGP-M has already been extensively deployed and used in the Internet. A particular example is Hurricane Electric (AS6939), a Tier-1 network operator, which has implemented >1,000 cases of BGP-M at 69 of its border routers to prefixes in 611 of its neighbour ASes, including many hyper-giant ASes and large content providers, on both IPv4 and IPv6 Internet. We examined the distribution and operation of BGP-M. We also ran traceroute using RIPE Atlas to infer the routing paths, the schemes of traffic allocation, and the delay on border links. This study provided the state-of-the-art knowledge on BGP-M with novel insights into the unique features and the distinct advantages of BGP-M as an effective and readily available technique for load balancing.Comment: 38 pages, 8 figures, 8 table

    Anatomy of Multipath BGP Deployment in a Large ISP Network

    Get PDF
    Multipath routing is useful for networks to achieve load sharing among multiple routing paths. Multipath BGP (M-BGP) is a technique to realize inter-domain multipath routing by enabling a BGP router to install multiple equally-good routes to a destination preïŹx. Most of previous works did not distinguish between intra-domain and inter-domain multipath routing. In this paper, we present a measurement study on the deployment of M-BGP in a large Internet service provider (ISP) network. Our method combines control-plane BGP measurements using Looking Glasses (LG), and data-plane traceroute measurements using RIPE Atlas. We focus on Hurricane Electric (AS6939) because it is a global ISP that connects with hundreds of major exchange points and exchanges IP trafïŹc with thousands of different networks. And more importantly, we ïŹnd that this ISP has by far the largest number of M-BGP deployments among autonomous systems with LG servers. SpeciïŹcally, Hurricane Electric has deployed M-BGP with 512 of its peering ASes at 58 PoPs around the world, including many top ASes and content providers. We also observe that most of its M-BGP deployments involve IXP interconnections. Our work provides insights into the latest deployment of M-BGP in a major ISP network and it highlights the characteristics and effectiveness of M-BGP as a means to realize load sharing

    Seven years in the life of Hypergiants’ off-nets

    Get PDF

    BGP-Multipath Routing in the Internet

    Get PDF
    BGP-Multipath, or BGP-M, is a routing technique for balancing traffic load in the Internet. It enables a Border Gateway Protocol (BGP) border router to install multiple ‘equally-good’ paths to a destination prefix. While other multipath routing techniques are deployed at internal routers, BGP-M is deployed at border routers where traffic is shared on multiple border links between Autonomous Systems (ASes). Although there are a considerable number of research efforts on multipath routing, there is so far no dedicated measurement or study on BGP-M in the literature. This thesis presents the first systematic study on BGP-M. I proposed a novel approach to inferring the deployment of BGP-M by querying Looking Glass (LG) servers. I conducted a detailed investigation on the deployment of BGP-M in the Internet. I also analysed BGP-M’s routing properties based on traceroute measurements using RIPE Atlas probes. My research has revealed that BGP-M has already been used in the Internet. In particular, Hurricane Electric (AS6939), a Tier-1 network operator, has deployed BGP-M at border routers across its global network to hundreds of its neighbour ASes on both IPv4 and IPv6 Internet. My research has provided the state-of-the-art knowledge and insights in the deployment, configuration and operation of BGP-M. The data, methods and analysis introduced in this thesis can be immensely valuable to researchers, network operators and regulators who are interested in improving the performance and security of Internet routing. This work has raised awareness of BGP-M and may promote more deployment of BGP-M in future because BGP-M not only provides all benefits of multipath routing but also has distinct advantages in terms of flexibility, compatibility and transparency

    From the edge to the core : towards informed vantage point selection for internet measurement studies

    Get PDF
    Since the early days of the Internet, measurement scientists are trying to keep up with the fast-paced development of the Internet. As the Internet grew organically over time and without build-in measurability, this process requires many workarounds and due diligence. As a result, every measurement study is only as good as the data it relies on. Moreover, data quality is relative to the research question—a data set suitable to analyze one problem may be insuïŹ€icient for another. This is entirely expected as the Internet is decentralized, i.e., there is no single observation point from which we can assess the complete state of the Internet. Because of that, every measurement study needs specifically selected vantage points, which fit the research question. In this thesis, we present three different vantage points across the Internet topology— from the edge to the Internet core. We discuss their specific features, suitability for different kinds of research questions, and how to work with the corresponding data. The data sets obtained at the presented vantage points allow us to conduct three different measurement studies and shed light on the following aspects: (a) The prevalence of IP source address spoofing at a large European Internet Exchange Point (IXP), (b) the propagation distance of BGP communities, an optional transitive BGP attribute used for traïŹ€ic engineering, and (c) the impact of the global COVID-19 pandemic on Internet usage behavior at a large Internet Service Provider (ISP) and three IXPs.Seit den frĂŒhen Tagen des Internets versuchen Forscher im Bereich Internet Measu- rement, mit der rasanten Entwicklung des des Internets Schritt zu halten. Da das Internet im Laufe der Zeit organisch gewachsen ist und nicht mit Blick auf Messbar- keit entwickelt wurde, erfordert dieser Prozess eine Meg Workarounds und Sorgfalt. Jede Measurement Studie ist nur so gut wie die Daten, auf die sie sich stĂŒtzt. Und DatenqualitĂ€t ist relativ zur Forschungsfrage - ein Datensatz, der fĂŒr die Analyse eines Problems geeiget ist, kann fĂŒr ein anderes unzureichend sein. Dies ist durchaus zu erwarten, da das Internet dezentralisiert ist, d. h. es gibt keinen einzigen Be- obachtungspunkt, von dem aus wir den gesamten Zustand des Internets beurteilen können. Aus diesem Grund benötigt jede Measurement Studie gezielt ausgewĂ€hlte Beobachtungspunkte, die zur Forschungsfrage passen. In dieser Arbeit stellen wir drei verschiedene Beobachtungspunkte vor, die sich ĂŒber die gsamte Internet-Topologie erstrecken— vom Rand bis zum Kern des Internets. Wir diskutieren ihre spezifischen Eigenschaften, ihre Eignung fĂŒr verschiedene Klas- sen von Forschungsfragen und den Umgang mit den entsprechenden Daten. Die an den vorgestellten Beobachtungspunkten gewonnenen DatensĂ€tze ermöglichen uns die DurchfĂŒhrung von drei verschiedenen Measurement Studien und damit die folgenden Aspekte zu beleuchten: (a) Die PrĂ€valenz von IP Source Address Spoofing bei einem großen europĂ€ischen Internet Exchange Point (IXP), (b) die Ausbreitungsdistanz von BGP-Communities, ein optionales transitives BGP-Attribut, das Anwendung im Bereich TraïŹ€ic-Enigneering findet sowie (c) die Auswirkungen der globalen COVID- 19-Pandemie auf das Internet-Nutzungsverhalten an einem großen Internet Service Provider (ISP) und drei IXPs

    On the latency and routing impacts of remote peering to the Internet

    Get PDF
    Remote peering (RP) has crucially altered the Internet topology and its economics. In creasingly popular thanks to its lower costs and simplicity, RP has shifted the member base of Internet eXchange Points (IXPs) from strictly local to include ASes located any where in the world. While the popularity of RP is well understood, its implications on Internet routing and performance are not. In this thesis, we perform a comprehensive measurement study of RP in the wild, based on a representative set of IXPs (including some of the largest ones in the world, covering the five continents). We first identify the challenges of inferring remote peering and the limitations of the existing methodologies. Next, we perform active measurements to identify the deployment of remote IXP inter faces and announced prefixes in these IXPs, including a longitudinal analysis to observe RP growth over one and a half years. We use the RP inferences on IXPs to investigate whether RP routes announced at IXPs tend to be preferred over local ones and what are their latency and latency variability impacts when using different interconnection meth ods (remote peering, local peering, and transit) to deliver traffic. Next, we asses the RP latency impact when using a remote connection to international IXPs and reaching prefix destinations announced by their members. We perform measurements leveraging the in frastructure of a large Latin American RP reseller and compare the latency to reach IXP prefixes via RP and four Transit providers. Finally, we glimpse some of the RP impli cations on Internet routing. We evaluate how RP can considerably affect IXP members’ connection stability, potentially introduce routing detours caused by prefix announcement mispractices and be the target of traffic engineering by ASes using BGP communities

    Steering hyper-giants' traffic at scale

    Get PDF
    Large content providers, known as hyper-giants, are responsible for sending the majority of the content traffic to consumers. These hyper-giants operate highly distributed infrastructures to cope with the ever-increasing demand for online content. To achieve 40 commercial-grade performance of Web applications, enhanced end-user experience, improved reliability, and scaled network capacity, hyper-giants are increasingly interconnecting with eyeball networks at multiple locations. This poses new challenges for both (1) the eyeball networks having to perform complex inbound traffic engineering, and (2) hyper-giants having to map end-user requests to appropriate servers. We report on our multi-year experience in designing, building, rolling-out, and operating the first-ever large scale system, the Flow Director, which enables automated cooperation between one of the largest eyeball networks and a leading hyper-giant. We use empirical data collected at the eyeball network to evaluate its impact over two years of operation. We find very high compliance of the hyper-giant to the Flow Director’s recommendations, resulting in (1) close to optimal user-server mapping, and (2) 15% reduction of the hyper-giant’s traffic overhead on the ISP’s long-haul links, i.e., benefits for both parties and end-users alike.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe
    corecore