372 research outputs found

    Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning

    Full text link
    The operation of groups of heavy-duty vehicles (HDVs) at a small inter-vehicular distance (known as platoon) allows to lower the overall aerodynamic drag and, therefore, to reduce fuel consumption and greenhouse gas emissions. However, due to the large mass and limited engine power of HDVs, slopes have a significant impact on the feasible and optimal speed profiles that each vehicle can and should follow. Therefore maintaining a short inter-vehicular distance as required by platooning without coordination between vehicles can often result in inefficient or even unfeasible trajectories. In this paper we propose a two-layer control architecture for HDV platooning aimed to safely and fuel-efficiently coordinate the vehicles in the platoon. Here, the layers are responsible for the inclusion of preview information on road topography and the real-time control of the vehicles, respectively. Within this architecture, dynamic programming is used to compute the fuel-optimal speed profile for the entire platoon and a distributed model predictive control framework is developed for the real-time control of the vehicles. The effectiveness of the proposed controller is analyzed by means of simulations of several realistic scenarios that suggest a possible fuel saving of up to 12% for the follower vehicles compared to the use of standard platoon controllers.Comment: 16 pages, 16 figures, submitted to journa

    Optimizing Coordinated Vehicle Platooning: An Analytical Approach Based on Stochastic Dynamic Programming

    Full text link
    Platooning connected and autonomous vehicles (CAVs) can improve traffic and fuel efficiency. However, scalable platooning operations require junction-level coordination, which has not been well studied. In this paper, we study the coordination of vehicle platooning at highway junctions. We consider a setting where CAVs randomly arrive at a highway junction according to a general renewal process. When a CAV approaches the junction, a system operator determines whether the CAV will merge into the platoon ahead according to the positions and speeds of the CAV and the platoon. We formulate a Markov decision process to minimize the discounted cumulative travel cost, i.e. fuel consumption plus travel delay, over an infinite time horizon. We show that the optimal policy is threshold-based: the CAV will merge with the platoon if and only if the difference between the CAV's and the platoon's predicted times of arrival at the junction is less than a constant threshold. We also propose two ready-to-implement algorithms to derive the optimal policy. Comparison with the classical value iteration algorithm implies that our approach explicitly incorporating the characteristics of the optimal policy is significantly more efficient in terms of computation. Importantly, we show that the optimal policy under Poisson arrivals can be obtained by solving a system of integral equations. We also validate our results in simulation with Real-time Strategy (RTS) using real traffic data. The simulation results indicate that the proposed method yields better performance compared with the conventional method

    Provably safe cruise control of vehicular platoons

    Full text link
    We synthesize performance-aware safe cruise control policies for longitudinal motion of platoons of autonomous vehicles. Using set-invariance theories, we guarantee infinite-time collision avoidance in the presence of bounded additive disturbances, while ensuring that the length and the cruise speed of the platoon are bounded within specified ranges. We propose: 1) a centralized control policy and 2) a distributed control policy, where each vehicle's control decision depends solely on its relative kinematics with respect to the platoon leader. Numerical examples are included.NSF; CPS-1446151; CMMI-1400167; FA 9550-15-1-0186 - AFOSR; Schlumberger Foundation Faculty for the Future Fellowship; FA 9550-15-1-0186 - AFOSR; NSF; ECCS-1550016; CNS 123922

    Fuel-Efficient Driving Strategies for Heavy-Duty Vehicles: A Platooning Approach Based on Speed Profile Optimization

    Get PDF
    A method for reducing the fuel consumption of a platoon of heavy-duty vehicles (HDVs) is described and evaluated in simulations for homogeneous and heterogeneous platoons. The method, which is based on speed profile optimization and is referred to as P-SPO, was applied to a set of road profiles of 10 km length, resulting in fuel reduction of 15.8% for a homogeneous platoon and between 16.8% and 17.4% for heterogeneous platoons of different mass configurations, relative to the combination of standard cruise control (for the lead vehicle) and adaptive cruise control (for the follower vehicle). In a direct comparison with MPC-based approaches, it was found that P-SPO outperforms the fuel savings of such methods by around 3 percentage points for the entire platoon, in similar settings. In P-SPO, unlike most common platooning approaches, each vehicle within the platoon receives its own optimized speed profile, thus eliminating the intervehicle distance control problem. Moreover, the P-SPO approach requires only a simple vehicle controller, rather than the two-layer control architecture used in MPC-based approaches

    Fuel-efficient driving strategies

    Get PDF
    This thesis is concerned with fuel-efficient driving strategies for vehicles driving on roads with varying topography, as well as estimation of road grade\ua0and vehicle mass for vehicles utilizing such strategies. A framework referred\ua0to as speed profile optimization (SPO), is introduced for reducing the fuel\ua0or energy consumption of single vehicles (equipped with either combustion\ua0or electric engines) and platoons of several vehicles. Using the SPO-based\ua0methods, average reductions of 11.5% in fuel consumption for single trucks,\ua07.5 to 12.6% energy savings in electric vehicles, and 15.8 to 17.4% average\ua0fuel consumption reductions for platoons of trucks were obtained. Moreover,\ua0SPO-based methods were shown to achieve higher savings compared to\ua0the commonly used methods for fuel-efficient driving. Furthermore, it was\ua0demonstrated that the simulations are sufficiently accurate to be transferred\ua0to real trucks. In the SPO-based methods, the optimized speed profiles were\ua0generated using a genetic algorithm for which it was demonstrated, in a\ua0discretized case, that it is able to produce speed profiles whose fuel consumption\ua0is within 2% of the theoretical optimum.A feedforward neural network (FFNN) approach, with a simple feedback\ua0mechanism, is introduced and evaluated in simulations, for simultaneous estimation of the road grade and vehicle mass. The FFNN provided road grade\ua0estimates with root mean square (RMS) error of around 0.10 to 0.14 degrees,\ua0as well as vehicle mass estimates with an average RMS error of 1%, relative\ua0to the actual value. The estimates obtained with the FFNN outperform road\ua0grade and mass estimates obtained with other approaches

    Leveraging Connected Highway Vehicle Platooning Technology to Improve the Efficiency and Effectiveness of Train Fleeting Under Moving Blocks

    Get PDF
    Future advanced Positive Train Control systems may allow North American railroads to introduce moving blocks with shorter train headways. This research examines how closely following trains respond to different throttle and brake inputs. Using insights from connected automobile and truck platooning technology, six different following train control algorithms were developed, analyzed for stability, and evaluated with simulated fleets of freight trains. While moving blocks require additional train spacing beyond minimum safe braking distance to account for train control actions, certain following train algorithms can help minimize this distance and balance fuel efficiency and train headway by changing control parameters
    • …
    corecore