189 research outputs found

    Impact of Automated Vehicles Using Eco-Cruise Control on the Traffic Flow

    Get PDF
    The paper provides a detailed analysis of the impact of automated vehicles using eco-cruise control system on the traffic flow. The speed profiles of vehicles using eco-cruise control system generally differ from those of conventional human-driven vehicles. The characteristics of the traffic flow on macroscopic traffic level combine both automated and human-driven vehicles. In the simulation-based analysis the effects of traffic volume and the ratio of the automated vehicles are in the focus. Based on the results the analysis an extension of the eco-cruise control is also proposed, in which the balance between the traffic flow and transport efficiency is achieved

    Impacts of Connected and Automated Vehicles on Energy and Traffic Flow: Optimal Control Design and Verification Through Field Testing

    Get PDF
    This dissertation assesses eco-driving effectiveness in several key traffic scenarios that include passenger vehicle transportation in highway driving and urban driving that also includes interactions with traffic signals, as well as heavy-duty line-haul truck transportation in highway driving with significant road grade. These studies are accomplished through both traffic microsimulation that propagates individual vehicle interactions to synthesize large-scale traffic patterns that emerge from the eco-driving strategies, and through experimentation in which real prototyped connected and automated vehicles (CAVs) are utilized to directly measure energy benefits from the designed eco-driving control strategies. In particular, vehicle-in-the-loop is leveraged for the CAVs driven on a physical test track to interact with surrounding traffic that is virtually realized through said microsimulation software in real time. In doing so, model predictive control is designed and implemented to create performative eco-driving policies and to select vehicle lane, as well as enforce safety constraints while autonomously driving a real vehicle. Ultimately, eco-driving policies are both simulated and experimentally vetted in a variety of typical driving scenarios to show up to a 50% boost in fuel economy when switching to CAV drivers without compromising traffic flow. The first part of this dissertation specifically assesses energy efficiency of connected and automated passenger vehicles that exploit intention-sharing sourced from both neighboring vehicles in a highway scene and from traffic lights in an urban scene. Linear model predictive control is implemented for CAV motion planning, whereby chance constraints are introduced to balance between traffic compactness and safety, and integer decision variables are introduced for lane selection and collision avoidance in multi-lane environments. Validation results are shown from both large-scale microsimulation and through experimentation of real prototyped CAVs. The second part of this dissertation then assesses energy efficiency of automated line-haul trucks when tasked to aerodynamically platoon. Nonlinear model predictive control is implemented for motion planning, and simulation and experimentation are conducted for platooning verification under highway conditions with traffic. Then, interaction-aware and intention-sharing cooperative control is further introduced to eliminate experimentally measured platoon disengagements that occur on real highways when using only status-sharing control. Finally, the performance of automated drivers versus human drivers are compared in a point-to-point scenario to verify fundamental eco-driving impacts -- experimentally showing eco-driving to boost energy economy by 11% on average even in simple driving scenarios

    A self-learning intersection control system for connected and automated vehicles

    Get PDF
    This study proposes a Decentralized Sparse Coordination Learning System (DSCLS) based on Deep Reinforcement Learning (DRL) to control intersections under the Connected and Automated Vehicles (CAVs) environment. In this approach, roadway sections are divided into small areas; vehicles try to reserve their desired area ahead of time, based on having a common desired area with other CAVs; the vehicles would be in an independent or coordinated state. Individual CAVs are set accountable for decision-making at each step in both coordinated and independent states. In the training process, CAVs learn to minimize the overall delay at the intersection. Due to the chain impact of taking random actions in the training course, the trained model can deal with unprecedented volume circumstances, the main challenge in intersection management. Application of the model to a single-lane intersection with no turning movement as a proof-of-concept test reveals noticeable improvements in traffic measures compared to three other intersection control systems. A Spring Mass Damper (SMD) model is developed to control platooning behavior of CAVs. In the SMD model, each vehicle is assumed as a mass, coupled with its preceding vehicle with a spring and a damper. The spring constant and damper coefficient control the interaction between vehicles. Limitations on communication range and the number of vehicles in each platoon are applied in this model, and the SMD model controls intra-platoon and inter-platoon interactions. The simulation result for a regular highway section reveals that the proposed platooning algorithm increases the maximum throughput by 29% and 63% under 50% and 100% market penetration rate of CAVs. A merging section with different volume combinations on the main section and merging section and different market penetration rates of CAVs is also modeled to test inter-platoon spacing performance in accommodating merging vehicles. Noticeable travel time reduction is observed in both mainline and merging lanes and under all volume combinations in 80% and higher MPR of CAVs. For a more reliable assessment of the DSCLS, the model is applied to a more realistic intersection, including three approaching lanes in each direction and turning movements. The proposed algorithm decreases delay by 58%, 19%, and 13% in moderate, high, and extreme volume regimes, improving travel time accordingly. Comparison of safety measures reveals 28% improvement in Post Encroachment Time (PET) in the extreme volume regime and minor improvements in high and moderate volume regimes. Due to the limited acceleration and deceleration rates, the proposed model does not show a better performance in environmental measures, including fuel consumption and CO2 emission, compared to the conventional control systems. However, the DSCLS noticeably outperforms the other pixel-reservation counterpart control system, with limited acceleration and deceleration rates. The application of the model to a corridor of four interactions shows the same trends in traffic, safety, and environmental measures as the single intersection experiment. An automated intersection control system for platooning CAVs is developed by combining the two proposed models, which remarkably improves traffic and safety measures, specifically in extreme volume regimes compared to the regular DSCLS model
    • …
    corecore