49 research outputs found

    Modeling and Control for Vision Based Rear Wheel Drive Robot and Solving Indoor SLAM Problem Using LIDAR

    Get PDF
    abstract: To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several critical modeling, design, control objectives for rear-wheel drive ground vehicles. Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how to build low-cost multi-capability robot platform that can be used for conducting FAME research. A TFC-KIT car chassis was augmented to provide a suite of substantive capabilities. The augmented vehicle (FreeSLAM Robot) costs less than 500butoffersthecapabilityofcommerciallyavailablevehiclescostingover500 but offers the capability of commercially available vehicles costing over 2000. All demonstrations presented involve rear-wheel drive FreeSLAM robot. The following summarizes the key hardware demonstrations presented and analyzed: (1)Cruise (v, ) control along a line, (2) Cruise (v, ) control along a curve, (3) Planar (x, y) Cartesian Stabilization for rear wheel drive vehicle, (4) Finish the track with camera pan tilt structure in minimum time, (5) Finish the track without camera pan tilt structure in minimum time, (6) Vision based tracking performance with different cruise speed vx, (7) Vision based tracking performance with different camera fixed look-ahead distance L, (8) Vision based tracking performance with different delay Td from vision subsystem, (9) Manually remote controlled robot to perform indoor SLAM, (10) Autonomously line guided robot to perform indoor SLAM. For most cases, hardware data is compared with, and corroborated by, model based simulation data. In short, the thesis uses low-cost self-designed rear-wheel drive robot to demonstrate many capabilities that are critical in order to reach the longer-term FAME goal.Dissertation/ThesisDefense PresentationMasters Thesis Electrical Engineering 201

    Localização e mapeamento eficiente para robótica : algoritmos e ferramentas

    Get PDF
    Doutoramento conjunto em InformáticaUm dos problemas fundamentais em robótica é a capacidade de estimar a pose de um robô móvel relativamente ao seu ambiente. Este problema é conhecido como localização robótica e a sua exatidão e eficiência têm um impacto direto em todos os sistemas que dependem da localização. Nesta tese, abordamos o problema da localização propondo um algoritmo baseado em scan matching com otimização robusta de mínimos quadrados não lineares em manifold com a utilização de um campo de verosimilhança contínuo como modelo de perceção. Esta solução oferece uma melhoria percetível na eficiência computacional sem perda de exatidão. Associado à localização está o problema de criar uma representação geométrica (ou mapa) do meio ambiente recorrendo às medidas disponíveis, um problema conhecido como mapeamento. No mapeamento a representação geométrica mais popular é a grelha volumétrica que discretiza o espaço em volumes cúbicos de igual tamanho. A implementação direta de uma grelha volumétrica oferece acesso direto e rápido aos dados mas requer uma quantidade substancial de memória. Portanto, propõe-se uma estrutura de dados híbrida, com divisão esparsa do espaço combinada com uma subdivisão densa do espaço que oferece tempos de acesso eficientes com alocações de memória reduzidas. Além disso, também oferece um mecanismo integrado de compressão de dados para reduzir ainda mais o uso de memória e uma estrutura de partilha de dados implícita que duplica dados, de forma eficiente, quando necessário recorrendo a uma estratégia copy-on-write. A implementação da solução descrita é disponibilizada na forma de uma biblioteca de software que oferece um framework para a criação de modelos baseados em grelhas volumétricas, e.g. grelhas de ocupação. Como existe uma separação entre o modelo e a gestão de espaço, todas as funcionalidades da abordagem esparsa-densa estão disponíveis para qualquer modelo implementado com o framework. O processo de mapeamento é um problema complexo considerando que localização e mapeamento são resolvidos simultaneamente. Este problema, conhecido como localização e mapeamento simultâneo (SLAM), tem tendência a de consumir recursos consideráveis à medida que a exigência na qualidade do mapeamento aumenta. De modo a contribuir para o aumento da eficiência, esta tese apresenta duas solução de SLAM. Na primeira abordagem, o algoritmo de localização é adaptado ao mapeamento incremental que, em combinação com o framework esparso-denso, oferece uma solução de SLAM online computacionalmente eficiente. O resultados obtidos são comparados com outras soluções disponíveis na literatura recorrendo a um benchmark de SLAM. Os resultados obtidos demonstram que a nossa solução oferece uma boa eficiência sem comprometer a exatidão. A segunda abordagem combina o nosso SLAM online com um filtro de partículas Rao-Blackwellized para propor uma solução de full SLAM com um grau elevado de eficiência computacional. A solução inclui propostas de distribuição melhorada com refinamento de pose através de scan matching, re-amostragem adaptativa com pesos de amostragem suavizados, partilha eficiente de dados entre partículas da mesma geração e suporte para multi-threading.One of the most basic perception problems in robotics is the ability to estimate the pose of a mobile robot relative to the environment. This problem is known as mobile robot localization and its accuracy and efficiency has a direct impact in all systems than depend on localization. In this thesis, we address the localization problem by proposing an algorithm based on scan matching with robust non-linear least squares optimization on a manifold that relies on a continuous likelihood field as measurement model. This solution offers a noticeable improvement in computational efficiency without losing accuracy. Associated with localization is the problem of creating the geometric representation (or map) of the environment using the available measurements, a problem known as mapping. In mapping, the most popular geometric representation is the volumetric grid that quantizes space into cubic volumes of equal size. The regular volumetric grid implementation offers direct and fast access to data but requires a substantial amount of allocated memory. Therefore, in this thesis, we propose a hybrid data structure with sparse division of space combined with dense subdivision of space that offers efficient access times with reduced memory allocation. Additionally, it offers an online data compression mechanism to further reduce memory usage and an implicit data sharing structure that efficiently duplicates data when needed using a thread safe copy-on-write strategy. The implementation of the solution is available as a software library that provides a framework to create models based on volumetric grids, e.g. occupancy grids. The separation between the model and space management makes all features of the sparse-dense approach available to every model implemented with the framework. The process of mapping is a complex problem, considering that localization and mapping have to be solved simultaneously. This problem, known as simultaneous localization and mapping (SLAM), has the tendency to consume considerable resources as the mapping quality requirements increase. As an effort to increase the efficiency of SLAM, this thesis presents two SLAM solutions. The first proposal adapts our localization algorithm to incremental mapping that, in combination with the sparse-dense framework, provides a computationally efficient online SLAM solution. Using a SLAM benchmark, the obtained results are compared with other solutions found in the literature. The comparison shows that our solution provides good efficiency without compromising accuracy. The second approach combines our online SLAM with a Rao-Blackwellized particle filter to propose a highly computationally efficient full SLAM solution. It includes an improved proposal distribution with scan matching pose refinement, adaptive resampling with smoothed importance weight, efficient sharing of data between sibling particles and multithreading support

    Stereo Visual SLAM for Mobile Robots Navigation

    Get PDF
    Esta tesis está enfocada a la combinación de los campos de la robótica móvil y la visión por computador, con el objetivo de desarrollar métodos que permitan a un robot móvil localizarse dentro de su entorno mientras construye un mapa del mismo, utilizando como única entrada un conjunto de imágenes. Este problema se denomina SLAM visual (por las siglas en inglés de "Simultaneous Localization And Mapping") y es un tema que aún continúa abierto a pesar del gran esfuerzo investigador realizado en los últimos años. En concreto, en esta tesis utilizamos cámaras estéreo para capturar, simultáneamente, dos imágenes desde posiciones ligeramente diferentes, proporcionando así información 3D de forma directa. De entre los problemas de localización de robots, en esta tesis abordamos dos de ellos: el seguimiento de robots y la localización y mapeado simultáneo (o SLAM). El primero de ellos no tiene en cuenta el mapa del entorno sino que calcula la trayectoria del robot mediante la composición incremental de las estimaciones de su movimiento entre instantes de tiempo consecutivos. Cuando se usan imágenes para calcular esta trayectoria, el problema toma el nombre de "odometría visual", y su resolución es más sencilla que la del SLAM visual. De hecho, a menudo se integra como parte de un sistema de SLAM completo. Esta tesis contribuye con la propuesta de dos sistemas de odometría visual. Uno de ellos está basado en un solución cerrada y eficiente mientras que el otro está basado en un proceso de optimización no-lineal que implementa un nuevo método de detección y eliminación rápida de espurios. Los métodos de SLAM, por su parte, también abordan la construcción de un mapa del entorno con el objetivo de mejorar sensiblemente la localización del robot, evitando de esta forma la acumulación de error en la que incurre la odometría visual. Además, el mapa construido puede ser empleado para hacer frente a situaciones exigentes como la recuperación de la localización tras la pérdida del robot o realizar localización global. En esta tesis se presentan dos sistemas completos de SLAM visual. Uno de ellos se ha implementado dentro del marco de los filtros probabilísticos no parámetricos, mientras que el otro está basado en un método nuevo de "bundle adjustment" relativo que ha sido integrado con algunas técnicas recientes de visión por computador. Otra contribución de esta tesis es la publicación de dos colecciones de datos que contienen imágenes estéreo capturadas en entornos urbanos sin modificar, así como una estimación del camino real del robot basada en GPS (denominada "ground truth"). Estas colecciones sirven como banco de pruebas para validar métodos de odometría y SLAM visual

    Contributions to Localization, Mapping and Navigation in Mobile Robotics

    Get PDF
    This thesis focuses on the problem of enabling mobile robots to autonomously build world models of their environments and to employ them as a reference to self–localization and navigation. For mobile robots to become truly autonomous and useful, they must be able of reliably moving towards the locations required by their tasks. This simple requirement gives raise to countless problems that have populated research in the mobile robotics community for the last two decades. Among these issues, two of the most relevant are: (i) secure autonomous navigation, that is, moving to a target avoiding collisions and (ii) the employment of an adequate world model for robot self-referencing within the environment and also for locating places of interest. The present thesis introduces several contributions to both research fields. Among the contributions of this thesis we find a novel approach to extend SLAM to large-scale scenarios by means of a seamless integration of geometric and topological map building in a probabilistic framework that estimates the hybrid metric-topological (HMT) state space of the robot path. The proposed framework unifies the research areas of topological mapping, reasoning on topological maps and metric SLAM, providing also a natural integration of SLAM and the “robot awakening” problem. Other contributions of this thesis cover a wide variety of topics, such as optimal estimation in particle filters, a new probabilistic observation model for laser scanners based on consensus theory, a novel measure of the uncertainty in grid mapping, an efficient method for range-only SLAM, a grounded method for partitioning large maps into submaps, a multi-hypotheses approach to grid map matching, and a mathematical framework for extending simple obstacle avoidance methods to realistic robots

    Sparse Bayesian information filters for localization and mapping

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008This thesis formulates an estimation framework for Simultaneous Localization and Mapping (SLAM) that addresses the problem of scalability in large environments. We describe an estimation-theoretic algorithm that achieves significant gains in computational efficiency while maintaining consistent estimates for the vehicle pose and the map of the environment. We specifically address the feature-based SLAM problem in which the robot represents the environment as a collection of landmarks. The thesis takes a Bayesian approach whereby we maintain a joint posterior over the vehicle pose and feature states, conditioned upon measurement data. We model the distribution as Gaussian and parametrize the posterior in the canonical form, in terms of the information (inverse covariance) matrix. When sparse, this representation is amenable to computationally efficient Bayesian SLAM filtering. However, while a large majority of the elements within the normalized information matrix are very small in magnitude, it is fully populated nonetheless. Recent feature-based SLAM filters achieve the scalability benefits of a sparse parametrization by explicitly pruning these weak links in an effort to enforce sparsity. We analyze one such algorithm, the Sparse Extended Information Filter (SEIF), which has laid much of the groundwork concerning the computational benefits of the sparse canonical form. The thesis performs a detailed analysis of the process by which the SEIF approximates the sparsity of the information matrix and reveals key insights into the consequences of different sparsification strategies. We demonstrate that the SEIF yields a sparse approximation to the posterior that is inconsistent, suffering from exaggerated confidence estimates. This overconfidence has detrimental effects on important aspects of the SLAM process and affects the higher level goal of producing accurate maps for subsequent localization and path planning. This thesis proposes an alternative scalable filter that maintains sparsity while preserving the consistency of the distribution. We leverage insights into the natural structure of the feature-based canonical parametrization and derive a method that actively maintains an exactly sparse posterior. Our algorithm exploits the structure of the parametrization to achieve gains in efficiency, with a computational cost that scales linearly with the size of the map. Unlike similar techniques that sacrifice consistency for improved scalability, our algorithm performs inference over a posterior that is conservative relative to the nominal Gaussian distribution. Consequently, we preserve the consistency of the pose and map estimates and avoid the effects of an overconfident posterior. We demonstrate our filter alongside the SEIF and the standard EKF both in simulation as well as on two real-world datasets. While we maintain the computational advantages of an exactly sparse representation, the results show convincingly that our method yields conservative estimates for the robot pose and map that are nearly identical to those of the original Gaussian distribution as produced by the EKF, but at much less computational expense. The thesis concludes with an extension of our SLAM filter to a complex underwater environment. We describe a systems-level framework for localization and mapping relative to a ship hull with an Autonomous Underwater Vehicle (AUV) equipped with a forward-looking sonar. The approach utilizes our filter to fuse measurements of vehicle attitude and motion from onboard sensors with data from sonar images of the hull. We employ the system to perform three-dimensional, 6-DOF SLAM on a ship hull

    Localização e navegação de um veículo de condução autónoma

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesA área da condução autónoma tem sido palco de grandes desenvolvimentos nos últimos anos. Não só se tem visto um grande impulso na investigação, existindo já um número considerável de carros autónomos, mas também no mercado, com vários sistemas de condução assistida a equipar veículos comercializados. No trabalho realizado no âmbito desta dissertação, foram abordados e implementados vários tópicos relevantes para condução autónoma. Nomeadamente, foram implementados sistemas de mapeamento, localização e navegação num veículo autónomo dotado de um sistema de locomoção Ackerman. O veículo é capaz de construir o mapa da pista e de usar esse mapa para navegar. O mecanismo de mapeamento é supervisionado, no sentido em que o veículo tem de ser remotamente controlado de modo a cobrir a totalidade da pista. A localização do veículo na pista é realizado usando um filtro de partículas, usando um modelo de movimento adequado ao seu tipo de locomoção. O planeamento de percurso faz-se a dois níveis. A um nível mais alto, definem-se pontos de passagem na pista que estabelecem o percurso geral a realizar pelo veículo. A definição destes pontos está diretamente relacionada com a concretização de tarefas impostas ao veículo. A um nível mais baixo, o percurso entre pontos adjacentes anteriores é detalhado numa sequência mais fina de pontos de passagem que tem em consideração as limitações do modelo Ackerman da locomoção do veículo. A navegação é adaptativa, no sentido em que se adequa à existência de obstáculos, entretanto detetados pelo sistema sensorial do veículo. O sistema sensorial do veículo é essencialmente baseado num dispositivo com visão RGB-D (Kinect) montado num suporte com dois graus de liberdade (pan&tilt). Este sistema é usado concorrentemente para ver a estrada e os obstáculos que nela possam existir e para detetar e identificar sinais de trânsito que aparecem na pista. A aquisição e processamento dos dados sensoriais e a sua transformação em informação (localização do veículo na pista, deteção e localização de obstáculos, deteção e identificação dos sinais de trânsito) foi trabalho realizado pelo autor. Um agente de software foi desenvolvido para gerir o acesso concorrente ao dispositivo de visão. O veículo desenvolvido participou na Competição de Condução Autónoma, do Festival Nacional de Robótica, edição de 2013, tendo alcançado o primeiro lugar.The autonomous driving field has been a stage of major developments in the last years. Not only has been seen a major push in the research, already existing several self driving cars, but also in the market, with several assisted driving systems equipped in commercialized vehicles. In the work developed in the scope of this dissertation, it were approached and developed several relevant topics to the autonomous driving problem. Namely, it were implemented mapping systems, localization and navigation in an autonomous vehicle with an Ackerman locomotion system. The vehicle is capable of building the map of the track and use that map to navigate. The mapping mechanism is supervised, the vehicle has to be remotely controlled to cover the entire track. The localization of the vehicle in the track is accomplished using a particle filter, using the adequate motion model to its locomotion system. The path planning is performed at two levels. At a higher level, the overall course to be performed by the vehicle is defined by passage points. At a lower level, the path between the aforementioned points is detailed in a thiner sequence of points that take into account the limitations of the Ackerman motion model. The navigation is adaptive since it adapts to the existence of the obstacles detected by the robot’s sensory system. The vehicle’s sensory system is essentially based on a device with RGB-D vision system (Kinect) mounted over a structure with two degrees of freedom (pan&tilt). This system is concurrently used to see the track and the obstacles that may exist and to detect and identify traffic signs that appear on the track. The acquisition and processing of the sensory data and its transformation in information (localization of the vehicle in the track, detection and localization of obstacles, detection and identification of traffic signs) was work developed by the author. A software agent was developed to manage the concurrent access to the vision device. The developed vehicle participated in the Autonomous Driving Competition, from the Portuguese Robotics Open, 2013 edition, having achieved the first place

    2D SLAM Correction Prediction in Large Scale Urban Environments

    Get PDF
    International audienceSimultaneous Localization And Mapping (SLAM) is one of the major bricks needed to build truly autonomous mobile robots. The probabilistic formulation of SLAM is based on two models: the motion model and the observation model. In practice, these models, together with the SLAM map representation, do not model perfectly the robot's real dynamics, the sensor measurement errors and the environment. Consequently, systematic errors affect SLAM estimations. In this paper, we propose two approaches to predict corrections to be applied to SLAM estimations. Both are based on the Ensemble Multilayer Perceptron model. The first approach uses successive estimated poses to predict the errors, with no assumptions on the underlying SLAM process or sensor used. The second method is specific to 2D likelihood SLAM approaches, thus, the likelihood distributions are used to predict the corrections, making this second approach independent of the sensor used. We also build a hybrid correction module based on successive estimated poses and the likelihood distributions. The validity of both approaches is evaluated through two experiments using different evaluation metrics and sensor configurations
    corecore