40 research outputs found

    An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices

    Get PDF
    The nonsymmetric Lanczos method can be used to compute eigenvalues of large sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. An implementation is presented of a look-ahead version of the Lanczos algorithm that, except for the very special situation of an incurable breakdown, overcomes these problems by skipping over those steps in which a breakdown or near-breakdown would occur in the standard process. The proposed algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector products and inner products as the standard Lanczos process without look-ahead

    A biconjugate gradient type algorithm on massively parallel architectures

    Get PDF
    The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. Recently, Freund and Nachtigal have proposed a novel BCG type approach, the quasi-minimal residual method (QMR), which overcomes the problems of BCG. Here, an implementation is presented of QMR based on an s-step version of the nonsymmetric look-ahead Lanczos algorithm. The main feature of the s-step Lanczos algorithm is that, in general, all inner products, except for one, can be computed in parallel at the end of each block; this is unlike the other standard Lanczos process where inner products are generated sequentially. The resulting implementation of QMR is particularly attractive on massively parallel SIMD architectures, such as the Connection Machine

    Recent advances in Lanczos-based iterative methods for nonsymmetric linear systems

    Get PDF
    In recent years, there has been a true revival of the nonsymmetric Lanczos method. On the one hand, the possible breakdowns in the classical algorithm are now better understood, and so-called look-ahead variants of the Lanczos process have been developed, which remedy this problem. On the other hand, various new Lanczos-based iterative schemes for solving nonsymmetric linear systems have been proposed. This paper gives a survey of some of these recent developments

    Krylov Subspace Methods for Complex Non-Hermitian Linear Systems

    Get PDF
    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported

    Lanczos-type solvers for nonsymmetric linear systems of equations

    Get PDF
    Among the iterative methods for solving large linear systems with a sparse (or, possibly, structured) nonsymmetric matrix, those that are based on the Lanczos process feature short recurrences for the generation of the Krylov space. This means low cost and low memory requirement. This review article introduces the reader not only to the basic forms of the Lanczos process and some of the related theory, but also describes in detail a number of solvers that are based on it, including those that are considered to be the most efficient ones. Possible breakdowns of the algorithms and ways to cure them by look-ahead are also discusse

    BiCGCR2: A new extension of conjugate residual method for solving non-Hermitian linear systems

    Get PDF
    In the present paper, we introduce a new extension of the conjugate residual (CR) for solving non-Hermitian linear systems with the aim of developing an alternative basic solver to the established biconjugate gradient (BiCG), biconjugate residual (BiCR) and biconjugate A-orthogonal residual (BiCOR) methods. The proposed Krylov subspace method, referred to as the BiCGCR2 method, is based on short-term vector recurrences and is mathematically equivalent to both BiCR and BiCOR. We demonstrate by extensive numerical experiments that the proposed iterative solver has often better convergence performance than BiCG, BiCR and BiCOR. Hence, it may be exploited for the development of new variants of non-optimal Krylov subspace methods

    Exploiting the Composite Step Strategy to the BiconjugateA-Orthogonal Residual Method for Non-Hermitian Linear Systems

    Get PDF
    The Biconjugate A-Orthogonal Residual (BiCOR) method carried out in finite precision arithmetic by means of the biconjugate A-orthonormalization procedure may possibly tend to suffer from two sources of numerical instability, known as two kinds of breakdowns, similarly to those of the Biconjugate Gradient (BCG) method. This paper naturally exploits the composite step strategy employed in the development of the composite step BCG (CSBCG) method into the BiCOR method to cure one of the breakdowns called as pivot breakdown. Analogously to the CSBCG method, the resulting interesting variant, with only a minor modification to the usual implementation of the BiCOR method, is able to avoid near pivot breakdowns and compute all the well-defined BiCOR iterates stably on the assumption that the underlying biconjugate A-orthonormalization procedure does not break down. Another benefit acquired is that it seems to be a viable algorithm providing some further practically desired smoothing of the convergence history of the norm of the residuals, which is justified by numerical experiments. In addition, the exhibited method inherits the promising advantages of the empirically observed stability and fast convergence rate of the BiCOR method over the BCG method so that it outperforms the CSBCG method to some extent
    corecore