1,588 research outputs found

    Independent sets and non-augmentable paths in generalizations of tournaments

    Get PDF
    AbstractWe study different classes of digraphs, which are generalizations of tournaments, to have the property of possessing a maximal independent set intersecting every non-augmentable path (in particular, every longest path). The classes are the arc-local tournament, quasi-transitive, locally in-semicomplete (out-semicomplete), and semicomplete k-partite digraphs. We present results on strongly internally and finally non-augmentable paths as well as a result that relates the degree of vertices and the length of longest paths. A short survey is included in the introduction

    Distance-two labelings of digraphs

    Full text link
    For positive integers j≥kj\ge k, an L(j,k)L(j,k)-labeling of a digraph DD is a function ff from V(D)V(D) into the set of nonnegative integers such that ∣f(x)−f(y)∣≥j|f(x)-f(y)|\ge j if xx is adjacent to yy in DD and ∣f(x)−f(y)∣≥k|f(x)-f(y)|\ge k if xx is of distant two to yy in DD. Elements of the image of ff are called labels. The L(j,k)L(j,k)-labeling problem is to determine the λ⃗j,k\vec{\lambda}_{j,k}-number λ⃗j,k(D)\vec{\lambda}_{j,k}(D) of a digraph DD, which is the minimum of the maximum label used in an L(j,k)L(j,k)-labeling of DD. This paper studies λ⃗j,k\vec{\lambda}_{j,k}- numbers of digraphs. In particular, we determine λ⃗j,k\vec{\lambda}_{j,k}- numbers of digraphs whose longest dipath is of length at most 2, and λ⃗j,k\vec{\lambda}_{j,k}-numbers of ditrees having dipaths of length 4. We also give bounds for λ⃗j,k\vec{\lambda}_{j,k}-numbers of bipartite digraphs whose longest dipath is of length 3. Finally, we present a linear-time algorithm for determining λ⃗j,1\vec{\lambda}_{j,1}-numbers of ditrees whose longest dipath is of length 3.Comment: 12 pages; presented in SIAM Coference on Discrete Mathematics, June 13-16, 2004, Loews Vanderbilt Plaza Hotel, Nashville, TN, US

    Sizing the length of complex networks

    Full text link
    Among all characteristics exhibited by natural and man-made networks the small-world phenomenon is surely the most relevant and popular. But despite its significance, a reliable and comparable quantification of the question `how small is a small-world network and how does it compare to others' has remained a difficult challenge to answer. Here we establish a new synoptic representation that allows for a complete and accurate interpretation of the pathlength (and efficiency) of complex networks. We frame every network individually, based on how its length deviates from the shortest and the longest values it could possibly take. For that, we first had to uncover the upper and the lower limits for the pathlength and efficiency, which indeed depend on the specific number of nodes and links. These limits are given by families of singular configurations that we name as ultra-short and ultra-long networks. The representation here introduced frees network comparison from the need to rely on the choice of reference graph models (e.g., random graphs and ring lattices), a common practice that is prone to yield biased interpretations as we show. Application to empirical examples of three categories (neural, social and transportation) evidences that, while most real networks display a pathlength comparable to that of random graphs, when contrasted against the absolute boundaries, only the cortical connectomes prove to be ultra-short
    • …
    corecore