810 research outputs found

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Some local--global phenomena in locally finite graphs

    Full text link
    In this paper we present some results for a connected infinite graph GG with finite degrees where the properties of balls of small radii guarantee the existence of some Hamiltonian and connectivity properties of GG. (For a vertex ww of a graph GG the ball of radius rr centered at ww is the subgraph of GG induced by the set Mr(w)M_r(w) of vertices whose distance from ww does not exceed rr). In particular, we prove that if every ball of radius 2 in GG is 2-connected and GG satisfies the condition dG(u)+dG(v)≥∣M2(w)∣−1d_G(u)+d_G(v)\geq |M_2(w)|-1 for each path uwvuwv in GG, where uu and vv are non-adjacent vertices, then GG has a Hamiltonian curve, introduced by K\"undgen, Li and Thomassen (2017). Furthermore, we prove that if every ball of radius 1 in GG satisfies Ore's condition (1960) then all balls of any radius in GG are Hamiltonian.Comment: 18 pages, 6 figures; journal accepted versio

    Packing 3-vertex paths in claw-free graphs and related topics

    Get PDF
    An L-factor of a graph G is a spanning subgraph of G whose every component is a 3-vertex path. Let v(G) be the number of vertices of G and d(G) the domination number of G. A claw is a graph with four vertices and three edges incident to the same vertex. A graph is claw-free if it has no induced subgraph isomorphic to a claw. Our results include the following. Let G be a 3-connected claw-free graph, x a vertex in G, e = xy an edge in G, and P a 3-vertex path in G. Then (a1) if v(G) = 0 mod 3, then G has an L-factor containing (avoiding) e, (a2) if v(G) = 1 mod 3, then G - x has an L-factor, (a3) if v(G) = 2 mod 3, then G - {x,y} has an L-factor, (a4) if v(G) = 0 mod 3 and G is either cubic or 4-connected, then G - P has an L-factor, (a5) if G is cubic with v(G) > 5 and E is a set of three edges in G, then G - E has an L-factor if and only if the subgraph induced by E in G is not a claw and not a triangle, (a6) if v(G) = 1 mod 3, then G - {v,e} has an L-factor for every vertex v and every edge e in G, (a7) if v(G) = 1 mod 3, then there exist a 4-vertex path N and a claw Y in G such that G - N and G - Y have L-factors, and (a8) d(G) < v(G)/3 +1 and if in addition G is not a cycle and v(G) = 1 mod 3, then d(G) < v(G)/3. We explore the relations between packing problems of a graph and its line graph to obtain some results on different types of packings. We also discuss relations between L-packing and domination problems as well as between induced L-packings and the Hadwiger conjecture. Keywords: claw-free graph, cubic graph, vertex disjoint packing, edge disjoint packing, 3-vertex factor, 3-vertex packing, path-factor, induced packing, graph domination, graph minor, the Hadwiger conjecture.Comment: 29 page

    Connectivity and Cycles in Graphs

    Get PDF
    https://digitalcommons.memphis.edu/speccoll-faudreerj/1199/thumbnail.jp

    Connectivity and Cycles

    Get PDF
    https://digitalcommons.memphis.edu/speccoll-faudreerj/1191/thumbnail.jp

    Circumferences of 3-connected claw-free graphs, II

    Get PDF
    For a graph H , the circumference of H , denoted by c ( H ) , is the length of a longest cycle in H . It is proved in Chen (2016) that if H is a 3-connected claw-free graph of order n with δ ≥ 8 , then c ( H ) ≥ min { 9 δ − 3 , n } . In Li (2006), Li conjectured that every 3-connected k -regular claw-free graph H of order n has c ( H ) ≥ min { 10 k − 4 , n } . Later, Li posed an open problem in Li (2008): how long is the best possible circumference for a 3-connected regular claw-free graph? In this paper, we study the circumference of 3-connected claw-free graphs without the restriction on regularity and provide a solution to the conjecture and the open problem above. We determine five families F i ( 1 ≤ i ≤ 5 ) of 3-connected claw-free graphs which are characterized by graphs contractible to the Petersen graph and show that if H is a 3-connected claw-free graph of order n with δ ≥ 16 , then one of the following holds: (a) either c ( H ) ≥ min { 10 δ − 3 , n } or H ∈ F 1 . (b) either c ( H ) ≥ min { 11 δ − 7 , n } or H ∈ F 1 ∪ F 2 . (c) either c ( H ) ≥ min { 11 δ − 3 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 . (d) either c ( H ) ≥ min { 12 δ − 10 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 ∪ F 4 . (e) if δ ≥ 23 then either c ( H ) ≥ min { 12 δ − 7 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 ∪ F 4 ∪ F 5 . This is also an improvement of the prior results in Chen (2016), Lai et al. (2016), Li et al. (2009) and Mathews and Sumner (1985)
    • …
    corecore