3,082 research outputs found

    On the weak order of Coxeter groups

    Full text link
    This paper provides some evidence for conjectural relations between extensions of (right) weak order on Coxeter groups, closure operators on root systems, and Bruhat order. The conjecture focused upon here refines an earlier question as to whether the set of initial sections of reflection orders, ordered by inclusion, forms a complete lattice. Meet and join in weak order are described in terms of a suitable closure operator. Galois connections are defined from the power set of W to itself, under which maximal subgroups of certain groupoids correspond to certain complete meet subsemilattices of weak order. An analogue of weak order for standard parabolic subsets of any rank of the root system is defined, reducing to the usual weak order in rank zero, and having some analogous properties in rank one (and conjecturally in general).Comment: 37 pages, submitte

    Random lattice triangulations: Structure and algorithms

    Get PDF
    The paper concerns lattice triangulations, that is, triangulations of the integer points in a polygon in R2\mathbb{R}^2 whose vertices are also integer points. Lattice triangulations have been studied extensively both as geometric objects in their own right and by virtue of applications in algebraic geometry. Our focus is on random triangulations in which a triangulation σ\sigma has weight λ∣σ∣\lambda^{|\sigma|}, where λ\lambda is a positive real parameter, and ∣σ∣|\sigma| is the total length of the edges in σ\sigma. Empirically, this model exhibits a "phase transition" at λ=1\lambda=1 (corresponding to the uniform distribution): for λ<1\lambda<1 distant edges behave essentially independently, while for λ>1\lambda>1 very large regions of aligned edges appear. We substantiate this picture as follows. For λ<1\lambda<1 sufficiently small, we show that correlations between edges decay exponentially with distance (suitably defined), and also that the Glauber dynamics (a local Markov chain based on flipping edges) is rapidly mixing (in time polynomial in the number of edges in the triangulation). This dynamics has been proposed by several authors as an algorithm for generating random triangulations. By contrast, for λ>1\lambda>1 we show that the mixing time is exponential. These are apparently the first rigorous quantitative results on the structure and dynamics of random lattice triangulations.Comment: Published at http://dx.doi.org/10.1214/14-AAP1033 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Relaxation Height in Energy Landscapes: an Application to Multiple Metastable States

    Get PDF
    The study of systems with multiple (not necessarily degenerate) metastable states presents subtle difficulties from the mathematical point of view related to the variational problem that has to be solved in these cases. We introduce the notion of relaxation height in a general energy landscape and we prove sufficient conditions which are valid even in presence of multiple metastable states. We show how these results can be used to approach the problem of multiple metastable states via the use of the modern theories of metastability. We finally apply these general results to the Blume--Capel model for a particular choice of the parameters ensuring the existence of two multiple, and not degenerate in energy, metastable states

    Inequalities for the h- and flag h-vectors of geometric lattices

    Full text link
    We prove that the order complex of a geometric lattice has a convex ear decomposition. As a consequence, if D(L) is the order complex of a rank (r+1) geometric lattice L, then for all i \leq r/2 the h-vector of D(L) satisfies h(i-1) \leq h(i) and h(i) \leq h(r-i). We also obtain several inequalities for the flag h-vector of D(L) by analyzing the weak Bruhat order of the symmetric group. As an application, we obtain a zonotopal cd-analogue of the Dowling-Wilson characterization of geometric lattices which minimize Whitney numbers of the second kind. In addition, we are able to give a combinatorial flag h-vector proof of h(i-1) \leq h(i) when i \leq (2/7)(r + 5/2).Comment: 15 pages, 2 figures. Typos fixed; most notably in Table 1. A note was added regarding a solution to problem 4.
    • …
    corecore