191 research outputs found

    Cohen-Macaulay Circulant Graphs

    Full text link
    Let G be the circulant graph C_n(S) with S a subset of {1,2,...,\lfloor n/2 \rfloor}, and let I(G) denote its the edge ideal in the ring R = k[x_1,...,x_n]. We consider the problem of determining when G is Cohen-Macaulay, i.e, R/I(G) is a Cohen-Macaulay ring. Because a Cohen-Macaulay graph G must be well-covered, we focus on known families of well-covered circulant graphs of the form C_n(1,2,...,d). We also characterize which cubic circulant graphs are Cohen-Macaulay. We end with the observation that even though the well-covered property is preserved under lexicographical products of graphs, this is not true of the Cohen-Macaulay property.Comment: 14 page

    Symmetric Interconnection Networks from Cubic Crystal Lattices

    Full text link
    Torus networks of moderate degree have been widely used in the supercomputer industry. Tori are superb when used for executing applications that require near-neighbor communications. Nevertheless, they are not so good when dealing with global communications. Hence, typical 3D implementations have evolved to 5D networks, among other reasons, to reduce network distances. Most of these big systems are mixed-radix tori which are not the best option for minimizing distances and efficiently using network resources. This paper is focused on improving the topological properties of these networks. By using integral matrices to deal with Cayley graphs over Abelian groups, we have been able to propose and analyze a family of high-dimensional grid-based interconnection networks. As they are built over nn-dimensional grids that induce a regular tiling of the space, these topologies have been denoted \textsl{lattice graphs}. We will focus on cubic crystal lattices for modeling symmetric 3D networks. Other higher dimensional networks can be composed over these graphs, as illustrated in this research. Easy network partitioning can also take advantage of this network composition operation. Minimal routing algorithms are also provided for these new topologies. Finally, some practical issues such as implementability and preliminary performance evaluations have been addressed

    On semi-transitive orientability of triangle-free graphs

    Get PDF
    An orientation of a graph is semi-transitive if it is acyclic, and for any directed path either there is no arc between and , or is an arc for all . An undirected graph is semi-transitive if it admits a semi-transitive orientation. Semi-transitive graphs generalize several important classes of graphs and they are precisely the class of word-representable graphs studied extensively in the literature. Determining if a triangle-free graph is semi-transitive is an NP-hard problem. The existence of non-semi-transitive triangle-free graphs was established via Erdős' theorem by Halldórsson and the authors in 2011. However, no explicit examples of such graphs were known until recent work of the first author and Saito who have shown computationally that a certain subgraph on 16 vertices of the triangle-free Kneser graph is not semi-transitive, and have raised the question on the existence of smaller triangle-free non-semi-transitive graphs. In this paper we prove that the smallest triangle-free 4-chromatic graph on 11 vertices (the Gr"otzsch graph) and the smallest triangle-free 4-chromatic 4-regular graph on 12 vertices (the Chvátal graph) are not semi-transitive. Hence, the Gr"otzsch graph is the smallest triangle-free non-semi-transitive graph. We also prove the existence of semi-transitive graphs of girth 4 with chromatic number 4 including a small one (the circulant graph on 13 vertices) and dense ones (Toft's graphs). Finally, we show that each -regular circulant graph (possibly containing triangles) is semi-transitive

    Multicluster interleaving on paths and cycles

    Get PDF
    Interleaving codewords is an important method not only for combatting burst errors, but also for distributed data retrieval. This paper introduces the concept of multicluster interleaving (MCI), a generalization of traditional interleaving problems. MCI problems for paths and cycles are studied. The following problem is solved: how to interleave integers on a path or cycle such that any m (m/spl ges/2) nonoverlapping clusters of order 2 in the path or cycle have at least three distinct integers. We then present a scheme using a "hierarchical-chain structure" to solve the following more general problem for paths: how to interleave integers on a path such that any m (m/spl ges/2) nonoverlapping clusters of order L (L/spl ges/2) in the path have at least L+1 distinct integers. It is shown that the scheme solves the second interleaving problem for paths that are asymptotically as long as the longest path on which an MCI exists, and clearly, for shorter paths as well
    corecore