6,261 research outputs found

    Patchiness and Demographic Noise in Three Ecological Examples

    Full text link
    Understanding the causes and effects of spatial aggregation is one of the most fundamental problems in ecology. Aggregation is an emergent phenomenon arising from the interactions between the individuals of the population, able to sense only -at most- local densities of their cohorts. Thus, taking into account the individual-level interactions and fluctuations is essential to reach a correct description of the population. Classic deterministic equations are suitable to describe some aspects of the population, but leave out features related to the stochasticity inherent to the discreteness of the individuals. Stochastic equations for the population do account for these fluctuation-generated effects by means of demographic noise terms but, owing to their complexity, they can be difficult (or, at times, impossible) to deal with. Even when they can be written in a simple form, they are still difficult to numerically integrate due to the presence of the "square-root" intrinsic noise. In this paper, we discuss a simple way to add the effect of demographic stochasticity to three classic, deterministic ecological examples where aggregation plays an important role. We study the resulting equations using a recently-introduced integration scheme especially devised to integrate numerically stochastic equations with demographic noise. Aimed at scrutinizing the ability of these stochastic examples to show aggregation, we find that the three systems not only show patchy configurations, but also undergo a phase transition belonging to the directed percolation universality class.Comment: 20 pages, 5 figures. To appear in J. Stat. Phy

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation

    Full text link
    Among the many additive manufacturing (AM) processes for metallic materials, selective laser melting (SLM) is arguably the most versatile in terms of its potential to realize complex geometries along with tailored microstructure. However, the complexity of the SLM process, and the need for predictive relation of powder and process parameters to the part properties, demands further development of computational and experimental methods. This review addresses the fundamental physical phenomena of SLM, with a special emphasis on the associated thermal behavior. Simulation and experimental methods are discussed according to three primary categories. First, macroscopic approaches aim to answer questions at the component level and consider for example the determination of residual stresses or dimensional distortion effects prevalent in SLM. Second, mesoscopic approaches focus on the detection of defects such as excessive surface roughness, residual porosity or inclusions that occur at the mesoscopic length scale of individual powder particles. Third, microscopic approaches investigate the metallurgical microstructure evolution resulting from the high temperature gradients and extreme heating and cooling rates induced by the SLM process. Consideration of physical phenomena on all of these three length scales is mandatory to establish the understanding needed to realize high part quality in many applications, and to fully exploit the potential of SLM and related metal AM processes

    The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review

    Get PDF
    The bias-extension test is a rather simple experiment aiming to determine in-plane shear properties of textile composite reinforcements. However the mechanics during the test involves fibrous material at large shear strains and large rotations of the fibres. Several aspects are still being studied and are not yet modeled in a consensual manner. The standard analysis of the test is based on two assumptions: inextensibility of the fibers and rotations at the yarn crossovers without slippage. They lead to the development of zones with constant fibre orientations proper to the bias-extension test. Beyond the analysis of the test within these basic assumptions, the paper presents studies that have been carried out on the lack of verification of these hypothesis (slippage, tension in the yarns, effects of fibre bending). The effects of temperature, mesoscopic modeling and tension locking are also considered in the case of the bias-extension test

    Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics

    Full text link
    Neural activity patterns related to behavior occur at many scales in time and space from the atomic and molecular to the whole brain. Here we explore the feasibility of interpreting neurophysiological data in the context of many-body physics by using tools that physicists have devised to analyze comparable hierarchies in other fields of science. We focus on a mesoscopic level that offers a multi-step pathway between the microscopic functions of neurons and the macroscopic functions of brain systems revealed by hemodynamic imaging. We use electroencephalographic (EEG) records collected from high-density electrode arrays fixed on the epidural surfaces of primary sensory and limbic areas in rabbits and cats trained to discriminate conditioned stimuli (CS) in the various modalities. High temporal resolution of EEG signals with the Hilbert transform gives evidence for diverse intermittent spatial patterns of amplitude (AM) and phase modulations (PM) of carrier waves that repeatedly re-synchronize in the beta and gamma ranges at near zero time lags over long distances. The dominant mechanism for neural interactions by axodendritic synaptic transmission should impose distance-dependent delays on the EEG oscillations owing to finite propagation velocities. It does not. EEGs instead show evidence for anomalous dispersion: the existence in neural populations of a low velocity range of information and energy transfers, and a high velocity range of the spread of phase transitions. This distinction labels the phenomenon but does not explain it. In this report we explore the analysis of these phenomena using concepts of energy dissipation, the maintenance by cortex of multiple ground states corresponding to AM patterns, and the exclusive selection by spontaneous breakdown of symmetry (SBS) of single states in sequences.Comment: 31 page

    Diffusive spreading and mixing of fluid monolayers

    Full text link
    The use of ultra-thin, i.e., monolayer films plays an important role for the emerging field of nano-fluidics. Since the dynamics of such films is governed by the interplay between substrate-fluid and fluid-fluid interactions, the transport of matter in nanoscale devices may be eventually efficiently controlled by substrate engineering. For such films, the dynamics is expected to be captured by two-dimensional lattice-gas models with interacting particles. Using a lattice gas model and the non-linear diffusion equation derived from the microscopic dynamics in the continuum limit, we study two problems of relevance in the context of nano-fluidics. The first one is the case in which along the spreading direction of a monolayer a mesoscopic-sized obstacle is present, with a particular focus on the relaxation of the fluid density profile upon encountering and passing the obstacle. The second one is the mixing of two monolayers of different particle species which spread side by side following the merger of two chemical lanes, here defined as domains of high affinity for fluid adsorption surrounded by domains of low affinity for fluid adsorption.Comment: 12 pages, 3 figure

    The multi-scale dust formation in substellar atmospheres

    Full text link
    Substellar atmospheres are observed to be irregularly variable for which the formation of dust clouds is the most promising candidate explanation. The atmospheric gas is convectively unstable and, last but not least, colliding convective cells are seen as cause for a turbulent fluid field. Since dust formation depends on the local properties of the fluid, turbulence influences the dust formation process and may even allow the dust formation in an initially dust-hostile gas. A regime-wise investigation of dust forming substellar atmospheric situations reveals that the largest scales are determined by the interplay between gravitational settling and convective replenishment which results in a dust-stratified atmosphere. The regime of small scales is determined by the interaction of turbulent fluctuations. Resulting lane-like and curled dust distributions combine to larger and larger structures. We compile necessary criteria for a subgrid model in the frame of large scale simulations as result of our study on small scale turbulence in dust forming gases.Comment: 22 Pages, 5 Figures, to appear in "Analysis and Numerics of Conservation Laws", ed. G. Warnecke (Springer-Verlag
    corecore