4,580 research outputs found

    Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation

    Get PDF
    We propose an automatic methodology framework for short- and long-term prediction of time series by means of fuzzy inference systems. In this methodology, fuzzy techniques and statistical techniques for nonparametric residual variance estimation are combined in order to build autoregressive predictive models implemented as fuzzy inference systems. Nonparametric residual variance estimation plays a key role in driving the identification and learning procedures. Concrete criteria and procedures within the proposed methodology framework are applied to a number of time series prediction problems. The learn from examples method introduced by Wang and Mendel (W&M) is used for identification. The Levenberg–Marquardt (L–M) optimization method is then applied for tuning. The W&M method produces compact and potentially accurate inference systems when applied after a proper variable selection stage. The L–M method yields the best compromise between accuracy and interpretability of results, among a set of alternatives. Delta test based residual variance estimations are used in order to select the best subset of inputs to the fuzzy inference systems as well as the number of linguistic labels for the inputs. Experiments on a diverse set of time series prediction benchmarks are compared against least-squares support vector machines (LS-SVM), optimally pruned extreme learning machine (OP-ELM), and k-NN based autoregressors. The advantages of the proposed methodology are shown in terms of linguistic interpretability, generalization capability and computational cost. Furthermore, fuzzy models are shown to be consistently more accurate for prediction in the case of time series coming from real-world applications.Ministerio de Ciencia e Innovación TEC2008-04920Junta de Andalucía P08-TIC-03674, IAC07-I-0205:33080, IAC08-II-3347:5626

    SW-ELM : A summation wavelet extreme learning machine algorithm with a priori initialization.

    No full text
    International audienceCombining neural networks and wavelet theory as an approximation or prediction models appears to be an effective solution in many applicative areas. However, when building such systems, one has to face parsimony problem, i.e., to look for a compromise between the complexity of the learning phase and accuracy performances. Following that, the aim of this paper is to propose a new structure of connectionist network, the Summation Wavelet Extreme Learning Machine (SW-ELM) that enables good accuracy and generalization performances, while limiting the learning time and reducing the impact of random initialization procedure. SW-ELM is based on Extreme Learning Machine (ELM) algorithm for fast batch learning, but with dual activation functions in the hidden layer nodes. This enhances dealing with non-linearity in an efficient manner. The initialization phase of wavelets (of hidden nodes) and neural network parameters (of input-hidden layer) is performed a priori, even before data are presented to the model. The whole proposition is illustrated and discussed by performing tests on three issues related to time-series application: an "input-output" approximation problem, a one-step ahead prediction problem, and a multi-steps ahead prediction problem. Performances of SW-ELM are benchmarked with ELM, Levenberg Marquardt algorithm for Single Layer Feed Forward Network (SLFN) and ELMAN network on six industrial data sets. Results show the significance of performances achieved by SW-ELM

    A hybrid LSTM neural network for energy consumption forecasting of individual households

    Get PDF
    Irregular human behaviors and univariate datasets remain as two main obstacles of data-driven energy consumption predictions for individual households. In this study, a hybrid deep learning model is proposed combining an ensemble long short term memory (LSTM) neural network with the stationary wavelet transform (SWT) technique. The SWT alleviates the volatility and increases the data dimensions, which potentially help improve the LSTM forecasting accuracy. Moreover, the ensemble LSTM neural network further enhances the forecasting performance of the proposed method. Verification experiments were performed based on a real-world household energy consumption dataset collected by the 'UK-DALEat project. The results show that, with a competitive training efficiency, the proposed method outperforms all compared state-of-art methods, including the persistent method, support vector regression (SVR), long short term memory (LSTM) neural network and convolutional neural network combining long short term memory (CNN-LSTM), with different step sizes at 5, 10, 20 and 30 minutes, using three error metrics
    corecore