4,459 research outputs found

    Cooperative Virtual Sensor for Fault Detection and Identification in Multi-UAV Applications

    Get PDF
    This paper considers the problem of fault detection and identification (FDI) in applications carried out by a group of unmanned aerial vehicles (UAVs) with visual cameras. In many cases, the UAVs have cameras mounted onboard for other applications, and these cameras can be used as bearing-only sensors to estimate the relative orientation of another UAV. The idea is to exploit the redundant information provided by these sensors onboard each of the UAVs to increase safety and reliability, detecting faults on UAV internal sensors that cannot be detected by the UAVs themselves. Fault detection is based on the generation of residuals which compare the expected position of a UAV, considered as target, with the measurements taken by one or more UAVs acting as observers that are tracking the target UAV with their cameras. Depending on the available number of observers and the way they are used, a set of strategies and policies for fault detection are defined. When the target UAV is being visually tracked by two or more observers, it is possible to obtain an estimation of its 3D position that could replace damaged sensors. Accuracy and reliability of this vision-based cooperative virtual sensor (CVS) have been evaluated experimentally in a multivehicle indoor testbed with quadrotors, injecting faults on data to validate the proposed fault detection methods.Comisión Europea H2020 644271Comisión Europea FP7 288082Ministerio de Economia, Industria y Competitividad DPI2015-71524-RMinisterio de Economia, Industria y Competitividad DPI2014-5983-C2-1-RMinisterio de Educación, Cultura y Deporte FP

    How much does a man cost? A dirty, dull, and dangerous application

    Get PDF
    Thesis (M.A.) University of Alaska Fairbanks, 2017This study illuminates the many abilities of Unmanned Aerial Vehicles (UAVs). One area of importance includes the UAV's capability to assist in the development, implementation, and execution of crisis management. This research focuses on UAV uses in pre and post crisis planning and accomplishments. The accompaniment of unmanned vehicles with base teams can make crisis management plans more reliable for the general public and teams faced with tasks such as search and rescue and firefighting. In the fight for mass acceptance of UAV integration, knowledge and attitude inventories were collected and analyzed. Methodology includes mixed method research collected by interviews and questionnaires available to experts and ground teams in the UAV fields, mining industry, firefighting and police force career field, and general city planning crisis management members. This information was compiled to assist professionals in creation of general guidelines and recommendations for how to utilize UAVs in crisis management planning and implementation as well as integration of UAVs into the educational system. The results from this study show the benefits and disadvantages of strategically giving UAVs a role in the construction and implementation of crisis management plans and other areas of interest. The results also show that the general public is lacking information and education on the abilities of UAVs. This education gap shows a correlation with negative attitudes towards UAVs. Educational programs to teach the public benefits of UAV integration should be implemented

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper
    corecore