285 research outputs found

    Facial Emotion Expressions in Human-Robot Interaction: A Survey

    Get PDF
    Facial expressions are an ideal means of communicating one's emotions or intentions to others. This overview will focus on human facial expression recognition as well as robotic facial expression generation. In the case of human facial expression recognition, both facial expression recognition on predefined datasets as well as in real-time will be covered. For robotic facial expression generation, hand-coded and automated methods i.e., facial expressions of a robot are generated by moving the features (eyes, mouth) of the robot by hand-coding or automatically using machine learning techniques, will also be covered. There are already plenty of studies that achieve high accuracy for emotion expression recognition on predefined datasets, but the accuracy for facial expression recognition in real-time is comparatively lower. In the case of expression generation in robots, while most of the robots are capable of making basic facial expressions, there are not many studies that enable robots to do so automatically. In this overview, state-of-the-art research in facial emotion expressions during human-robot interaction has been discussed leading to several possible directions for future research

    Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demonstration

    Full text link
    We propose a technique for multi-task learning from demonstration that trains the controller of a low-cost robotic arm to accomplish several complex picking and placing tasks, as well as non-prehensile manipulation. The controller is a recurrent neural network using raw images as input and generating robot arm trajectories, with the parameters shared across the tasks. The controller also combines VAE-GAN-based reconstruction with autoregressive multimodal action prediction. Our results demonstrate that it is possible to learn complex manipulation tasks, such as picking up a towel, wiping an object, and depositing the towel to its previous position, entirely from raw images with direct behavior cloning. We show that weight sharing and reconstruction-based regularization substantially improve generalization and robustness, and training on multiple tasks simultaneously increases the success rate on all tasks

    A Review on Human-Computer Interaction and Intelligent Robots

    Get PDF
    In the field of artificial intelligence, human–computer interaction (HCI) technology and its related intelligent robot technologies are essential and interesting contents of research. From the perspective of software algorithm and hardware system, these above-mentioned technologies study and try to build a natural HCI environment. The purpose of this research is to provide an overview of HCI and intelligent robots. This research highlights the existing technologies of listening, speaking, reading, writing, and other senses, which are widely used in human interaction. Based on these same technologies, this research introduces some intelligent robot systems and platforms. This paper also forecasts some vital challenges of researching HCI and intelligent robots. The authors hope that this work will help researchers in the field to acquire the necessary information and technologies to further conduct more advanced research

    Facial emotion expressions in human-robot interaction: A survey

    Get PDF
    Facial expressions are an ideal means of communicating one's emotions or intentions to others. This overview will focus on human facial expression recognition as well as robotic facial expression generation. In case of human facial expression recognition, both facial expression recognition on predefined datasets as well as in real time will be covered. For robotic facial expression generation, hand coded and automated methods i.e., facial expressions of a robot are generated by moving the features (eyes, mouth) of the robot by hand coding or automatically using machine learning techniques, will also be covered. There are already plenty of studies that achieve high accuracy for emotion expression recognition on predefined datasets, but the accuracy for facial expression recognition in real time is comparatively lower. In case of expression generation in robots, while most of the robots are capable of making basic facial expressions, there are not many studies that enable robots to do so automatically.Comment: Pre-print version. Accepted in International Journal of Social Robotic

    Learning Constrained Distributions of Robot Configurations with Generative Adversarial Network

    Full text link
    In high dimensional robotic system, the manifold of the valid configuration space often has a complex shape, especially under constraints such as end-effector orientation or static stability. We propose a generative adversarial network approach to learn the distribution of valid robot configurations under such constraints. It can generate configurations that are close to the constraint manifold. We present two applications of this method. First, by learning the conditional distribution with respect to the desired end-effector position, we can do fast inverse kinematics even for very high degrees of freedom (DoF) systems. Then, we use it to generate samples in sampling-based constrained motion planning algorithms to reduce the necessary projection steps, speeding up the computation. We validate the approach in simulation using the 7-DoF Panda manipulator and the 28-DoF humanoid robot Talos

    Service Humanoid Robotics: Review and Design of A Novel Bionic-Companionship Framework

    Get PDF
    At present, industrial robotics focused more on motion control and vision; whereas Humanoid Service Robotics (HSRs) are increasingly being investigated among researchers' and practitioners' field of speech interactions. The problematic and quality of human-robot interaction (HRI) has become one of the hot potatoes concerned in academia. This paper proposes a novel interactive framework suitable for HSRs. The proposed framework is grounded on the novel integration of Trevarthen Companionship Theory and neural image generation algorithm in computer vision. By integrating the image-to-natural interactivities generation, and communicate with the environment to better interact with the stakeholder, thereby changing from interaction to a bionic-companionship. In addition, the article also reviews the research of neural image generation algorithms and summarizes the application cases of the algorithm structure in the field of robotics from a critical perspective. We believe that the new interactive bionic-companionship framework can enable HSRs to further develop towards robot companions

    Learning-based methods for planning and control of humanoid robots

    Get PDF
    Nowadays, humans and robots are more and more likely to coexist as time goes by. The anthropomorphic nature of humanoid robots facilitates physical human-robot interaction, and makes social human-robot interaction more natural. Moreover, it makes humanoids ideal candidates for many applications related to tasks and environments designed for humans. No matter the application, an ubiquitous requirement for the humanoid is to possess proper locomotion skills. Despite long-lasting research, humanoid locomotion is still far from being a trivial task. A common approach to address humanoid locomotion consists in decomposing its complexity by means of a model-based hierarchical control architecture. To cope with computational constraints, simplified models for the humanoid are employed in some of the architectural layers. At the same time, the redundancy of the humanoid with respect to the locomotion task as well as the closeness of such a task to human locomotion suggest a data-driven approach to learn it directly from experience. This thesis investigates the application of learning-based techniques to planning and control of humanoid locomotion. In particular, both deep reinforcement learning and deep supervised learning are considered to address humanoid locomotion tasks in a crescendo of complexity. First, we employ deep reinforcement learning to study the spontaneous emergence of balancing and push recovery strategies for the humanoid, which represent essential prerequisites for more complex locomotion tasks. Then, by making use of motion capture data collected from human subjects, we employ deep supervised learning to shape the robot walking trajectories towards an improved human-likeness. The proposed approaches are validated on real and simulated humanoid robots. Specifically, on two versions of the iCub humanoid: iCub v2.7 and iCub v3

    The State of Lifelong Learning in Service Robots: Current Bottlenecks in Object Perception and Manipulation

    Get PDF
    Service robots are appearing more and more in our daily life. The development of service robots combines multiple fields of research, from object perception to object manipulation. The state-of-the-art continues to improve to make a proper coupling between object perception and manipulation. This coupling is necessary for service robots not only to perform various tasks in a reasonable amount of time but also to continually adapt to new environments and safely interact with non-expert human users. Nowadays, robots are able to recognize various objects, and quickly plan a collision-free trajectory to grasp a target object in predefined settings. Besides, in most of the cases, there is a reliance on large amounts of training data. Therefore, the knowledge of such robots is fixed after the training phase, and any changes in the environment require complicated, time-consuming, and expensive robot re-programming by human experts. Therefore, these approaches are still too rigid for real-life applications in unstructured environments, where a significant portion of the environment is unknown and cannot be directly sensed or controlled. In such environments, no matter how extensive the training data used for batch learning, a robot will always face new objects. Therefore, apart from batch learning, the robot should be able to continually learn about new object categories and grasp affordances from very few training examples on-site. Moreover, apart from robot self-learning, non-expert users could interactively guide the process of experience acquisition by teaching new concepts, or by correcting insufficient or erroneous concepts. In this way, the robot will constantly learn how to help humans in everyday tasks by gaining more and more experiences without the need for re-programming

    On Tackling Fundamental Constraints in Brain-Computer Interface Decoding via Deep Neural Networks

    Get PDF
    A Brain-Computer Interface (BCI) is a system that provides a communication and control medium between human cortical signals and external devices, with the primary aim to assist or to be used by patients who suffer from a neuromuscular disease. Despite significant recent progress in the area of BCI, there are numerous shortcomings associated with decoding Electroencephalography-based BCI signals in real-world environments. These include, but are not limited to, the cumbersome nature of the equipment, complications in collecting large quantities of real-world data, the rigid experimentation protocol and the challenges of accurate signal decoding, especially in making a system work in real-time. Hence, the core purpose of this work is to investigate improving the applicability and usability of BCI systems, whilst preserving signal decoding accuracy. Recent advances in Deep Neural Networks (DNN) provide the possibility for signal processing to automatically learn the best representation of a signal, contributing to improved performance even with a noisy input signal. Subsequently, this thesis focuses on the use of novel DNN-based approaches for tackling some of the key underlying constraints within the area of BCI. For example, recent technological improvements in acquisition hardware have made it possible to eliminate the pre-existing rigid experimentation procedure, albeit resulting in noisier signal capture. However, through the use of a DNN-based model, it is possible to preserve the accuracy of the predictions from the decoded signals. Moreover, this research demonstrates that by leveraging DNN-based image and signal understanding, it is feasible to facilitate real-time BCI applications in a natural environment. Additionally, the capability of DNN to generate realistic synthetic data is shown to be a potential solution in reducing the requirement for costly data collection. Work is also performed in addressing the well-known issues regarding subject bias in BCI models by generating data with reduced subject-specific features. The overall contribution of this thesis is to address the key fundamental limitations of BCI systems. This includes the unyielding traditional experimentation procedure, the mandatory extended calibration stage and sustaining accurate signal decoding in real-time. These limitations lead to a fragile BCI system that is demanding to use and only suited for deployment in a controlled laboratory. Overall contributions of this research aim to improve the robustness of BCI systems and enable new applications for use in the real-world
    • …
    corecore