411 research outputs found

    Discrete peakons

    Get PDF
    We demonstrate for the first time the possibility for explicit construction in a discrete Hamiltonian model of an exact solution of the form exp(n)\exp(-|n|), i.e., a discrete peakon. These discrete analogs of the well-known, continuum peakons of the Camassa-Holm equation [Phys. Rev. Lett. {\bf 71}, 1661 (1993)] are found in a model different from their continuum siblings. Namely, we observe discrete peakons in Klein-Gordon-type and nonlinear Schr\"odinger-type chains with long-range interactions. The interesting linear stability differences between these two chains are examined numerically and illustrated analytically. Additionally, inter-site centered peakons are also obtained in explicit form and their stability is studied. We also prove the global well-posedness for the discrete Klein-Gordon equation, show the instability of the peakon solution, and the possibility of a formation of a breathing peakon.Comment: Physica D, in pres

    Quantum Dynamics of Lorentzian Spacetime Foam

    Full text link
    A simple spacetime wormhole, which evolves classically from zero throat radius to a maximum value and recontracts, can be regarded as one possible mode of fluctuation in the microscopic ``spacetime foam'' first suggested by Wheeler. The dynamics of a particularly simple version of such a wormhole can be reduced to that of a single quantity, its throat radius; this wormhole thus provides a ``minisuperspace model'' for a structure in Lorentzian-signature foam. The classical equation of motion for the wormhole throat is obtained from the Einstein field equations and a suitable equation of state for the matter at the throat. Analysis of the quantum behavior of the hole then proceeds from an action corresponding to that equation of motion. The action obtained simply by calculating the scalar curvature of the hole spacetime yields a model with features like those of the relativistic free particle. In particular the Hamiltonian is nonlocal, and for the wormhole cannot even be given as a differential operator in closed form. Nonetheless the general solution of the Schr\"odinger equation for wormhole wave functions, i.e., the wave-function propagator, can be expressed as a path integral. Too complicated to perform exactly, this can yet be evaluated via a WKB approximation. The result indicates that the wormhole, classically stable, is quantum-mechanically unstable: A Feynman-Kac decomposition of the WKB propagator yields no spectrum of bound states. Though an initially localized wormhole wave function may oscillate for many classical expansion/recontraction periods, it must eventually leak to large radius values. The possibility of such a mode unstable against growth, combined withComment: 37 pages, 93-
    corecore