3,324 research outputs found

    A Survey on Graph Kernels

    Get PDF
    Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner's guide to kernel-based graph classification

    Modeling Complex Networks For (Electronic) Commerce

    Get PDF
    NYU, Stern School of Business, IOMS Department, Center for Digital Economy Researc

    Semi-supervised Domain Adaptation on Graphs with Contrastive Learning and Minimax Entropy

    Full text link
    Label scarcity in a graph is frequently encountered in real-world applications due to the high cost of data labeling. To this end, semi-supervised domain adaptation (SSDA) on graphs aims to leverage the knowledge of a labeled source graph to aid in node classification on a target graph with limited labels. SSDA tasks need to overcome the domain gap between the source and target graphs. However, to date, this challenging research problem has yet to be formally considered by the existing approaches designed for cross-graph node classification. To tackle the SSDA problem on graphs, a novel method called SemiGCL is proposed, which benefits from graph contrastive learning and minimax entropy training. SemiGCL generates informative node representations by contrasting the representations learned from a graph's local and global views. Additionally, SemiGCL is adversarially optimized with the entropy loss of unlabeled target nodes to reduce domain divergence. Experimental results on benchmark datasets demonstrate that SemiGCL outperforms the state-of-the-art baselines on the SSDA tasks

    Deep Learning with Partially Labeled Data for Radio Map Reconstruction

    Full text link
    In this paper, we address the problem of Received Signal Strength map reconstruction based on location-dependent radio measurements and utilizing side knowledge about the local region; for example, city plan, terrain height, gateway position. Depending on the quantity of such prior side information, we employ Neural Architecture Search to find an optimized Neural Network model with the best architecture for each of the supposed settings. We demonstrate that using additional side information enhances the final accuracy of the Received Signal Strength map reconstruction on three datasets that correspond to three major cities, particularly in sub-areas near the gateways where larger variations of the average received signal power are typically observed.Comment: 42 pages, 39 figure

    Deep Learning Methods for Vessel Trajectory Prediction based on Recurrent Neural Networks

    Full text link
    Data-driven methods open up unprecedented possibilities for maritime surveillance using Automatic Identification System (AIS) data. In this work, we explore deep learning strategies using historical AIS observations to address the problem of predicting future vessel trajectories with a prediction horizon of several hours. We propose novel sequence-to-sequence vessel trajectory prediction models based on encoder-decoder recurrent neural networks (RNNs) that are trained on historical trajectory data to predict future trajectory samples given previous observations. The proposed architecture combines Long Short-Term Memory (LSTM) RNNs for sequence modeling to encode the observed data and generate future predictions with different intermediate aggregation layers to capture space-time dependencies in sequential data. Experimental results on vessel trajectories from an AIS dataset made freely available by the Danish Maritime Authority show the effectiveness of deep-learning methods for trajectory prediction based on sequence-to-sequence neural networks, which achieve better performance than baseline approaches based on linear regression or on the Multi-Layer Perceptron (MLP) architecture. The comparative evaluation of results shows: i) the superiority of attention pooling over static pooling for the specific application, and ii) the remarkable performance improvement that can be obtained with labeled trajectories, i.e., when predictions are conditioned on a low-level context representation encoded from the sequence of past observations, as well as on additional inputs (e.g., port of departure or arrival) about the vessel's high-level intention, which may be available from AIS.Comment: Accepted for publications in IEEE Transactions on Aerospace and Electronic Systems, 17 pages, 9 figure
    • …
    corecore