18,054 research outputs found

    The color of sea level: importance of spatial variations in spectral shape for assessing the significance of trends

    Get PDF
    We investigate spatial variations in the shape of the spectrum of sea level variability, based on a homogeneously-sampled 12-year gridded altimeter dataset. We present a method of plotting spectral information as color, focusing on periods between 2 and 24 weeks, which shows that significant spatial variations in the spectral shape exist, and contain useful dynamical information. Using the Bayesian Information Criterion, we determine that, typically, a 5th order autoregressive model is needed to capture the structure in the spectrum. Using this model, we show that statistical errors in fitted local trends range between less than 1 and more than 5 times what would be calculated assuming “white” noise, and the time needed to detect a 1 mm/yr trend ranges between about 5 years and many decades. For global-mean sea level, the statistical error reduces to 0.1 mm/yr over 12 years, with only 2 years needed to detect a 1 mm/yr trend. We find significant regional differences in trend from the global mean. The patterns of these regional differences are indicative of a sea level trend dominated by dynamical ocean processes, over this perio

    CLIVAR Exchanges - Indian Ocean Climate

    Get PDF

    The Glacier Complexes of the Mountain Massifs of the North-West of Inner Asia and their Dynamics

    Get PDF
    The subject of this paper is the glaciation of the mountain massifs Mongun-Taiga, Tavan-Boghd-Ola, Turgeni- Nuru, and Harhira-Nuru. The glaciation is represented mostly by small forms that sometimes form a single complex of domeshaped peaks. According to the authors, the modern glaciated area of the mountain massifs is 21.2 km2 (Tavan-Boghd-Ola), 20.3 km2 (Mongun-Taiga), 42 km2 (Turgeni- Nuru), and 33.1 km2 (Harhira-Nuru). The area of the glaciers has been shrinking since the mid 1960’s. In 1995–2008, the rate of reduction of the glaciers’ area has grown considerably: valley glaciers were rapidly degrading and splitting; accumulation of morainic material in the lower parts of the glaciers accelerated. Small glaciers transformed into snowfields and rock glaciers. There has been also a degradation of the highest parts of the glaciers and the collapse of the glacial complexes with a single zone of accumulation into isolated from each other glaciers. Reduced snow cover area has led to a rise in the firn line and the disintegration of a common accumulation area of the glacial complex. In the of the Mongun-Taiga massif, in 1995– 2008, the firn line rose by 200–300 m. The reduction of the glaciers significantly lagged behind the change in the position of the accumulation area boundary. In the past two years, there has been a significant recovery of the glaciers that could eventually lead to their slower degradation or stabilization of the glaciers in the study area

    Feasibility study on manganese nodules recovery in the Clarion-Clipperton Zone

    No full text
    The sea occupies three quarters of the area on the earth and provides various kinds of resources to mankind in the form of minerals, food, medicines and even energy. “Seabed exploitation” specifically deals with recovery of the resources that are found on the seabed, in the form of solids, liquids and gasses (methane hydrates, oil and natural gas). The resources are abundant; nevertheless the recovery process from the seabed, poses various challenges to mankind. This study starts with a review on three types of resources: polymetallic manganese nodules, polymetallic manganese crusts and massive sulphides deposits. Each of them are rich in minerals, such as manganese, cobalt, nickel, copper and some rare earth elements. They are found at many locations in the deep seas and are potentially a big source of minerals. No commercial seabed mining activity has been accomplished to date due to the great complexities in recovery. This book describes the various challenges associated with a potential underwater mineral recovery operation, reviews and analyses the existing recovery techniques, and provides an innovative engineering system. It further identifies the associated risks and a suitable business model.Chapter 1 presents a brief background about the past and present industrial trends of seabed mining. A description of the sea, seabed and the three types of seabed mineral resources are also included. A section on motivations for deep sea mining follows which also compares the latter with terrestrial mining.Chapter 2 deals with the decision making process, including a market analysis, for selecting manganese nodules as the resource of interest. This is followed by a case study specific to the location of interest: West COMRA in the Clarion-Clipperton Zone. Specific site location is determined in order to estimate commercial risk, environmental impact assessment and logistic challenge.Chapter 3 lists the existing techniques for nodule recovery operation. The study identifies the main components of a nodules recovery system, and organizes them into: collector, propulsion and vertical transport systems.Chapter 4 discusses various challenges posed by manganese nodules recovery, in terms of the engineering and environment. The geo-political and legal-social issues have also been considered. This chapter plays an important role in defining the proposed engineering system, as addressing the identified challenges will better shape the proposed solution.Chapter 5 proposes an engineering system, by considering the key components in greater details. An innovative component, the black box is introduced, which is intended to be an environmentally-friendly solution for manganese nodules recovery. Other auxiliary components, such as the mother ship and metallurgical processing, are briefly included. A brief power supply analysis is also provided.Chapter 6 assesses the associated risks, which are divided into sections namely commercial viability, logistic challenges, environmental impact assessment and safety assessment. The feasibility of the proposed solution is also dealt with.Chapter 7 provides a business model for the proposed engineering system. Potential customers are identified, value proposition is determined, costumer relation is also suggested. Public awareness is then discussed and finally a SWOT analysis is presented. This business model serves as an important bridge to reach both industry and research institutes.Finally, Chapter 8 provides some conclusions and recommendation for future work

    CLIVAR Exchanges No. 23. Special issue on: Tropical-Extratropical Interactions

    Get PDF
    • …
    corecore