2,814 research outputs found

    Trajectory Length Prediction for Intelligent Traffic Signaling: A Data-Driven Approach

    Get PDF
    Ship trajectory length prediction is vital for intelligent traffic signaling in the controlled waterways of the Yangtze River. In current intelligent traffic signaling systems (ITSSs), ships are supposed to travel exactly along the central line of the Yangtze River, which is often not a valid assumption and has caused a number of problems. Over the past few years, traffic data have been accumulated exponentially, leading to the big data era. This trend allows more accurate prediction of ships' travel trajectory length based on historical data. In this paper, ships' historical trajectories are first grouped by using the fuzzy c-means clustering algorithm. The relationship between some known factors (i.e., ship speed, loading capacity, self-weight, maximum power, ship length, ship width, ship type, and water level) and the resultant memberships are then modeled using artificial neural networks. The trajectory length is then estimated by the sum of the predicted probabilities multiplied by the trajectory cluster centers' length. To the best of our knowledge, this is the first time to predict the overall trajectory length of manually controlled ships. The experimental results show that the proposed method can reduce the probability of generating incorrect traffic control signals by 74.68% over existing ITSSs. This will significantly improve the efficiency of the Yangtze River traffic management system and increase the traffic capacity by reducing the traveling time

    A Model for the Evaluation of Brazilian Road Transport: A Sustainable Perspective

    Get PDF

    Game Theoretic Model Predictive Control for Autonomous Driving

    Get PDF
    This study presents two closely-related solutions to autonomous vehicle control problems in highway driving scenario using game theory and model predictive control. We first develop a game theoretic four-stage model predictive controller (GT4SMPC). The controller is responsible for both longitudinal and lateral movements of Subject Vehicle (SV) . It includes a Stackelberg game as a high level controller and a model predictive controller (MPC) as a low level one. Specifically, GT4SMPC constantly establishes and solves games corresponding to multiple gaps in front of multiple-candidate vehicles (GCV) when SV is interacting with them by signaling a lane change intention through turning light or by a small lateral movement. SV’s payoff is the negative of the MPC’s cost function , which ensures strong connection between the game and that the solution of the game is more likely to be achieved by a hybrid MPC (HMPC). GCV’s payoff is a linear combination of the speed payoff, headway payoff and acceleration payoff. . We use decreasing acceleration model to generate our prediction of TV’s future motion, which is utilized in both defining TV’s payoffs over the prediction horizon in the game and as the reference of the MPC. Solving the games gives the optimal gap and the target vehicle (TV). In the low level , the lane change process are divided into four stages: traveling in the current lane, leaving current lane, crossing lane marking, traveling in the target lane. The division identifies the time that SV should initiate actual lateral movement for the lateral controller and specifies the constraints HMPC should deal at each step of the MPC prediction horizon. Then the four-stage HMPC controls SV’s actual longitudinal motion and execute the lane change at the right moment. Simulations showed the GT4SMPC is able to intelligently drive SV into the selected gap and accomplish both discretionary land change (DLC) and mandatory lane change (MLC) in a dynamic situation. Human-in-the-loop driving simulation indicated that GT4SMPC can decently control the SV to complete lane changes with the presence of human drivers. Second, we propose a differential game theoretic model predictive controller (DGTMPC) to address the drawbacks of GT4SMPC. In GT4SMPC, the games are defined as table game, which indicates each players only have limited amount of choices for a specific game and such choice remain fixed during the prediction horizon. In addition, we assume a known model for traffic vehicles but in reality drivers’ preference is partly unknown. In order to allow the TV to make multiple decisions within the prediction horizon and to measure TV’s driving style on-line, we propose a differential game theoretic model predictive controller (DGTMPC). The high level of the hierarchical DGTMPC is the two-player differential lane-change Stackelberg game. We assume each player uses a MPC to control its motion and the optimal solution of leaders’ MPC depends on the solution of the follower. Therefore, we convert this differential game problem into a bi-level optimization problem and solves the problem with the branch and bound algorithm. Besides the game, we propose an inverse model predictive control algorithm (IMPC) to estimate the MPC weights of other drivers on-line based on surrounding vehicle’s real-time behavior, assuming they are controlled by MPC as well. The estimation results contribute to a more appropriate solution to the game against driver of specific type. The solution of the algorithm indicates the future motion of the TV, which can be used as the reference for the low level controller. The low level HMPC controls both the longitudinal motion of SV and his real-time lane decision. Simulations showed that the DGTMPC can well identify the weights traffic vehicles’ MPC cost function and behave intelligently during the interaction. Comparison with level-k controller indicates DGTMPC’s Superior performance

    Anticipating the Effects of Economic Displacement in Marine Space with Agent Based Models

    Get PDF
    As marine space is managed into appropriate resource use areas, it is inevitable that some is allocated towards a mutually exclusive spatial activity. This exclusion results in displacement that has real economic consequences. When a wind energy area is placed in coastal waters, navigable space is reduced and vessels are displaced from their former routes. The USCG is concerned that re-routing will result in vessels navigating within closer proximity than they would otherwise in an open ocean scenario, and fear that this will increase the risk of vessel collision (USCG 2016). They recommend research into tools that are capable of predicting changes in vessel traffic patterns (USCG 2016). Agent based models are a method capable of predicting these traffic patterns, and are composed individual, autonomous goal directed software objects that form emergent behavior of interest. Agents are controlled by a simple behavioral rule, they must arrive at their destination without colliding with an obstacle or other vessel. They enforce this rule with the gravitational potential that exists between two objects. Attractive forces pull each agent towards their destination, while repulsive forces push them away from danger. We validated simulated vessel tracks against real turning circle test data, tested for the presence of chaotic systems, developed metrics to assess transportation costs, and applied the method to assess a wind energy area located outside of the entrance to the Port of New York and New Jersey

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks
    • …
    corecore