28 research outputs found

    RESOURCE ALLOCATION FOR WIRELESS RELAY NETWORKS

    Get PDF
    In this thesis, we propose several resource allocation strategies for relay networks in the context of joint power and bandwidth allocation and relay selection, and joint power allocation and subchannel assignment for orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDMA) systems. Sharing the two best ordered relays with equal power between the two users over Rayleigh flat fading channels is proposed to establish full diversity order for both users. Closed form expressions for the outage probability, and bit error probability (BEP) performance measures for both amplify and forward (AF) and decode and forward (DF) cooperative communication schemes are developed for different scenarios. To utilize the full potentials of relay-assisted transmission in multi user systems, we propose a mixed strategy of AF relaying and direct transmission, where the user transmits part of the data using the relay, and the other part is transmitted using the direct link. The resource allocation problem is formulated to maximize the sum rate. A recursive algorithm alternating between power allocation and bandwidth allocation steps is proposed to solve the formulated resource allocation problem. Due to the conflict between limited wireless resources and the fast growing wireless demands, Stackelberg game is proposed to allocate the relay resources (power and bandwidth) between competing users, aiming to maximize the relay benefits from selling its resources. We prove the uniqueness of Stackelberg Nash Equilibrium (SNE) for the proposed game. We develop a distributed algorithm to reach SNE, and investigate the conditions for the stability of the proposed algorithm. We propose low complexity algorithms for AF-OFDMA and DF-OFDMA systems to assign the subcarriers to the users based on high SNR approximation aiming to maximize the weighted sum rate. Auction framework is proposed to devise competition based solutions for the resource allocation of AF-OFDMA aiming tomaximize either vi the sum rate or the fairness index. Two auction algorithms are proposed; sequential and one-shot auctions. In sequential auction, the users evaluate the subcarrier based on the rate marginal contribution. In the one-shot auction, the users evaluate the subcarriers based on an estimate of the Shapley value and bids on all subcarriers at once

    Radio Resource Management in LTE-Advanced Systems with Carrier Aggregation

    Get PDF
    In order to meet the ever-increasing demand for wireless broadband services from fast growing mobile users, the Long Term Evolution -Advanced (LTE-A) standard has been proposed to effectively improve the system capacity and the spectral efficiency for the fourth-generation (4G) wireless mobile communications. Many advanced techniques are incorporated in LTE-A systems to jointly ameliorate system performance, among which Carrier Aggregation (CA) is considered as one of the most promising improvements that has profound significance even in the upcoming 5G era. Component carriers (CCs) from various portions of the spectrum are logically concatenated to form a much larger virtual band, resulting in remarkable boosted system capacity and user data throughput. However, the unique features of CA have posed many emerging challenges as well as span-new opportunities on the Radio Resource Management (RRM) in the LTE-A systems. First, although multi-CC transmission can bring higher throughput, it may incur more intensive interference for each CC and more power consumption for users. Thus the performance gain of CA under different conditions needs fully evaluating. Besides, as CA offers flexible CC selection and cross-CC load balancing and scheduling, enhanced RRM strategies should be designed to further optimize the overall resource utilization. In addition, CA enables the frequency reuse on a CC resolution, adding another dimension to inter-cell interference management in heterogeneous networks (HetNets). New interference management mechanisms should be designed to take the advantage of CA. Last but not least, CA empowers the LTE-A systems to aggregate the licensed spectrum with the unlicensed spectrum, thus offering a capacity surge. Yet how to balance the traffic between licensed and unlicensed spectrum and how to achieve a harmony coexistence with other unlicensed systems are still open issues. To this end, the dissertation emphasizes on the new functionalities introduced by CA to optimize the RRM performance in LTE-A systems. The main objectives are four-fold: 1) to fully evaluate the benefits of CA from different perspectives under different conditions via both theoretical analysis and simulations; 2) to design cross-layer CC selection, packet scheduling and power control strategies to optimize the target performance; 3) to analytically model the interference of HetNets with CA and propose dynamic interference mitigation strategies in a CA scenario; and 4) to investigate the impact of LTE transmissions on other unlicensed systems and develop enhanced RRM mechanisms for harmony coexistence. To achieve these objectives, we first analyze the benefits of CA via investigating the user accommodation capabilities of the system in the downlink admission control process. The LTE-A users with CA capabilities and the legacy LTE users are considered. Analytical models are developed to derive the maximum number of users that can be admitted into the system given the user QoS requirements and traffic features. The results show that with only a slightly higher spectrum utilization, the system can admit as much as twice LTE-A users than LTE users when the user traffic is bursty. Second, we study the RRM in the single-tier LTE-A system and propose a cross-layer dynamic CC selection and power control strategy for uplink CA. Specifically, the uplink power offset effects caused by multi-CC transmission are considered. An estimation method for user bandwidth allocation is developed and a combinatorial optimization problem is formulated to improve the user throughput via maximizing the user power utilization. Third, we explore the interference management problem in multi-tier HetNets considering the CC-resolution frequency reuse. An analytical model is devised to capture the randomness behaviors of the femtocells exploiting the stochastic geometry theory. The interaction between the base stations of different tiers are formulated into a two-level Stackelberg game, and a backward induction method is exploited to obtain the Nash equilibrium. Last, we focus on the mechanism design for licensed and unlicensed spectrum aggregation. An LTE MAC protocol on unlicensed spectrum is developed considering the coexistence with the Wi-Fi systems. The protocol captures the asynchronous nature of Wi-Fi transmissions in time-slotted LTE frame structure and strike a tunable tradeoff between LTE and Wi-Fi performance. Analytical analysis is also presented to reveal the essential relation among different parameters of the two systems. In summary, the dissertation aims at fully evaluating the benefits of CA in different scenarios and making full use of the benefits to develop efficient and effective RRM strategies for better LTE-Advanced system performance

    Traffic offloading in future, heterogeneous mobile networks

    Get PDF
    The rise of third-party content providers and the introduction of numerous applications has been driving the growth of mobile data traffic in the past few years. In order to tackle this challenge, Mobile Network Operators (MNOs) aim to increase their networks' capacity by expanding their infrastructure, deploying more Base Stations (BSs). Particularly, the creation of Heterogeneous Networks (HetNets) and the application of traffic offloading through the dense deployment of low-power BSs, the small cells (SCs), is one promising solution to address the aforementioned explosive data traffic increase. Due to their financial implementation requirements, which could not be met by the MNOs, the emergence of third parties that deploy small cell networks creates new business opportunities. Thus, the investigation of frameworks that facilitate the implementation of outsourced traffic offloading, the collaboration and the transactions among MNOs and third-party small cell owners, as well as the provision of participation incentives for all stakeholders is essential for the deployment of the necessary new infrastructure and capacity expansion. The aforementioned emergence of third-party content providers and their applications not only drives the increase in mobile data traffic, but also create new Quality of Service (QoS) as well as Quality of Experience (QoE) requirements that the MNOs need to guarantee for the satisfaction of their subscribers. Moreover, even though the MNOs accommodate this traffic, they do not get any monetary compensation or subsidization for the required capacity expansion. On the contrary, their revenues reduce continuously. To that end, it is necessary to research and design network and economic functionalities adapted to the new requirements, such as QoE-aware Radio Resource Management and Dynamic Pricing (DP) strategies, which both guarantee the subscriber satisfaction and maximization the MNO profit (to compensate the diminished MNOs' revenues and the increasing deployment investment). Following a thorough investigation of the state-of-the-art, a set of research directions were identified. This dissertation consists of contributions on network sharing and outsourced traffic offloading for the capacity enhancement of MNO networks, and the design of network and economic functions for the sustainable deployment and use of the densely constructed HetNets. The contributions of this thesis are divided into two main parts, as described in the following. The first part of the thesis introduces an innovative approach on outsourced traffic offloading, where we present a framework for the Multi-Operator Radio Access Network (MORAN) sharing. The proposed framework is based on an auction scheme used by a monopolistic Small Cell Operator (SCO), through which he leases his SC infrastructure to MNOs. As the lack of information on the future offered load and the auction strategies creates uncertainty for the MNOs, we designed a learning mechanism that assists the MNOs in their bid-placing decisions. Our simulations show that our proposal almost maximizes the social welfare, satisfying the involved stakeholders and providing them with participation incentives. The second part of the thesis researches the use of network and economic functions for MNO profit maximization, while guaranteeing the users' satisfaction. Particularly, we designed a model that accommodates a plethora of services with various QoS and QoE requirements, as well as diverse pricing, that is, various service prices and different charging schemes. In this model, we proposed QoE-aware user association, resource allocation and joint resource allocation and dynamic pricing algorithms, which exploit the QoE-awareness and the network's economic aspects, such as the profit. Our simulations have shown that our proposals gain substantial more profit compared to traditional and state-of-the-art solutions, while providing a similar or even better network performance.El aumento de los proveedores de contenido de terceros y la introducción de numerosas aplicaciones ha impulsado el crecimiento del tráfico de datos en redes móviles en los últimos años. Para hacer frente a este desafío, los operadores de redes móviles (Mobile Network Operators, MNOs) apuntan a aumentar la capacidad de sus redes mediante la expansión de su infraestructura y el despliegue de más estaciones base (BS). Particularmente, la creación de Redes Heterogéneas (Heterogenous Networks, HetNets) y la aplicación de descarga de tráfico a través del despliegue denso de BSs de baja potencia, las células pequeñas (small cells, SCs), es una solución prometedora para abordar el aumento del tráfico de datos explosivos antes mencionado. Debido a sus requisitos de implementación financiera, que los MNO no pudieron cumplir, la aparición de terceros que implementan redes de células pequeñas crea nuevas oportunidades comerciales. Por lo tanto, la investigación de marcos que faciliten la implementación de la descarga tercerizada de tráfico, la colaboración y las transacciones entre MNOs y terceros propietarios de células pequeñas, así como la provisión de incentivos de participación para todas las partes interesadas esencial para el despliegue de la nueva infraestructura necesaria y la expansión de la capacidad. La aparición antes mencionada de proveedores de contenido de terceros y sus aplicaciones no solo impulsa el aumento del tráfico de datos móviles, sino también crea nuevos requisitos de calidad de servicio (Quality of Service, QoS) y calidad de la experiencia (Quality of Experience, QoE) que los operadores de redes móviles deben garantizar para la satisfacción de sus suscriptores. Además, a pesar de que los operadores de redes móviles adaptan este tráfico, no obtienen ninguna compensación monetaria o subsidio por la expansión de capacidad requerida. Por el contrario, sus ingresos se reducen continuamente. Para ello, es necesario investigar y diseñar funcionalidades económicas y de red adaptadas a los nuevos requisitos, tales como las estrategias QoE-conscientes de gestión de recursos de radio y de precios dinámicos (Dynamic Pricing, DP), que garantizan la satisfacción del abonado y la maximización de la ganancia de operador móvil (para compensar los ingresos de los MNOs disminuidos y la creciente inversión de implementación). Después de una investigación exhaustiva del estado del arte, se identificaron un conjunto de direcciones de investigación. Esta disertación consiste en contribuciones sobre el uso compartido de redes y la descarga tercerizada de tráfico para la mejora de la capacidad de redes MNO, y el diseño de funciones económicas y de red para el despliegue y uso sostenible de las HetNets densamente construidas. Las contribuciones de esta tesis se dividen en dos partes principales, como se describe a continuación. La primera parte de la tesis presenta un enfoque innovador sobre la descarga subcontratada de tráfico, en el que presentamos un marco para el uso compartido de la red de acceso de radio de múltiples operadores (Multi-Operator RAN, MORAN). El marco propuesto se basa en un esquema de subasta utilizado por un operador monopólico de celda pequeña (Small Cell Operator, SCO), a través del cual arrienda su infraestructura SC a MNOs. Como la falta de información sobre la futura carga de red y las estrategias de subasta creaban incertidumbre para los MNO, diseñamos un mecanismo de aprendizaje que asiste a los MNO en sus decisiones de colocación de pujas. Nuestras simulaciones muestran que nuestra propuesta casi maximiza el bienestar social, satisfaciendo a las partes interesadas involucradas y proporcionándoles incentivos de participación. La segunda parte de la tesis investiga el uso de las funciones económicas y de red para la maximización de los beneficios de los MNOs, al tiempo que garantiza la satisfacción de los usuarios. Particularmente, diseñamos un modelo que acomoda una gran cantidad de servicios con diversos requisitos de QoS y QoE, tanto como diversos precios, es decir, varios precios de servicio y diferentes esquemas de cobro. En este modelo, propusimos algoritmos QoE-conscientes para asociación de usuarios, asignación de recursos y conjunta asignación de recursos y de fijación dinámica de precios, que explotan la conciencia de QoE y los aspectos económicos de la red, como la ganancia. Nuestras simulaciones han demostrado que nuestras propuestas obtienen un beneficio sustancial en comparación con las soluciones tradicionales y del estado del arte, a la vez que proporcionan un rendimiento de red similar o incluso mejor.Postprint (published version

    Traffic offloading in future, heterogeneous mobile networks

    Get PDF
    The rise of third-party content providers and the introduction of numerous applications has been driving the growth of mobile data traffic in the past few years. In order to tackle this challenge, Mobile Network Operators (MNOs) aim to increase their networks' capacity by expanding their infrastructure, deploying more Base Stations (BSs). Particularly, the creation of Heterogeneous Networks (HetNets) and the application of traffic offloading through the dense deployment of low-power BSs, the small cells (SCs), is one promising solution to address the aforementioned explosive data traffic increase. Due to their financial implementation requirements, which could not be met by the MNOs, the emergence of third parties that deploy small cell networks creates new business opportunities. Thus, the investigation of frameworks that facilitate the implementation of outsourced traffic offloading, the collaboration and the transactions among MNOs and third-party small cell owners, as well as the provision of participation incentives for all stakeholders is essential for the deployment of the necessary new infrastructure and capacity expansion. The aforementioned emergence of third-party content providers and their applications not only drives the increase in mobile data traffic, but also create new Quality of Service (QoS) as well as Quality of Experience (QoE) requirements that the MNOs need to guarantee for the satisfaction of their subscribers. Moreover, even though the MNOs accommodate this traffic, they do not get any monetary compensation or subsidization for the required capacity expansion. On the contrary, their revenues reduce continuously. To that end, it is necessary to research and design network and economic functionalities adapted to the new requirements, such as QoE-aware Radio Resource Management and Dynamic Pricing (DP) strategies, which both guarantee the subscriber satisfaction and maximization the MNO profit (to compensate the diminished MNOs' revenues and the increasing deployment investment). Following a thorough investigation of the state-of-the-art, a set of research directions were identified. This dissertation consists of contributions on network sharing and outsourced traffic offloading for the capacity enhancement of MNO networks, and the design of network and economic functions for the sustainable deployment and use of the densely constructed HetNets. The contributions of this thesis are divided into two main parts, as described in the following. The first part of the thesis introduces an innovative approach on outsourced traffic offloading, where we present a framework for the Multi-Operator Radio Access Network (MORAN) sharing. The proposed framework is based on an auction scheme used by a monopolistic Small Cell Operator (SCO), through which he leases his SC infrastructure to MNOs. As the lack of information on the future offered load and the auction strategies creates uncertainty for the MNOs, we designed a learning mechanism that assists the MNOs in their bid-placing decisions. Our simulations show that our proposal almost maximizes the social welfare, satisfying the involved stakeholders and providing them with participation incentives. The second part of the thesis researches the use of network and economic functions for MNO profit maximization, while guaranteeing the users' satisfaction. Particularly, we designed a model that accommodates a plethora of services with various QoS and QoE requirements, as well as diverse pricing, that is, various service prices and different charging schemes. In this model, we proposed QoE-aware user association, resource allocation and joint resource allocation and dynamic pricing algorithms, which exploit the QoE-awareness and the network's economic aspects, such as the profit. Our simulations have shown that our proposals gain substantial more profit compared to traditional and state-of-the-art solutions, while providing a similar or even better network performance.El aumento de los proveedores de contenido de terceros y la introducción de numerosas aplicaciones ha impulsado el crecimiento del tráfico de datos en redes móviles en los últimos años. Para hacer frente a este desafío, los operadores de redes móviles (Mobile Network Operators, MNOs) apuntan a aumentar la capacidad de sus redes mediante la expansión de su infraestructura y el despliegue de más estaciones base (BS). Particularmente, la creación de Redes Heterogéneas (Heterogenous Networks, HetNets) y la aplicación de descarga de tráfico a través del despliegue denso de BSs de baja potencia, las células pequeñas (small cells, SCs), es una solución prometedora para abordar el aumento del tráfico de datos explosivos antes mencionado. Debido a sus requisitos de implementación financiera, que los MNO no pudieron cumplir, la aparición de terceros que implementan redes de células pequeñas crea nuevas oportunidades comerciales. Por lo tanto, la investigación de marcos que faciliten la implementación de la descarga tercerizada de tráfico, la colaboración y las transacciones entre MNOs y terceros propietarios de células pequeñas, así como la provisión de incentivos de participación para todas las partes interesadas esencial para el despliegue de la nueva infraestructura necesaria y la expansión de la capacidad. La aparición antes mencionada de proveedores de contenido de terceros y sus aplicaciones no solo impulsa el aumento del tráfico de datos móviles, sino también crea nuevos requisitos de calidad de servicio (Quality of Service, QoS) y calidad de la experiencia (Quality of Experience, QoE) que los operadores de redes móviles deben garantizar para la satisfacción de sus suscriptores. Además, a pesar de que los operadores de redes móviles adaptan este tráfico, no obtienen ninguna compensación monetaria o subsidio por la expansión de capacidad requerida. Por el contrario, sus ingresos se reducen continuamente. Para ello, es necesario investigar y diseñar funcionalidades económicas y de red adaptadas a los nuevos requisitos, tales como las estrategias QoE-conscientes de gestión de recursos de radio y de precios dinámicos (Dynamic Pricing, DP), que garantizan la satisfacción del abonado y la maximización de la ganancia de operador móvil (para compensar los ingresos de los MNOs disminuidos y la creciente inversión de implementación). Después de una investigación exhaustiva del estado del arte, se identificaron un conjunto de direcciones de investigación. Esta disertación consiste en contribuciones sobre el uso compartido de redes y la descarga tercerizada de tráfico para la mejora de la capacidad de redes MNO, y el diseño de funciones económicas y de red para el despliegue y uso sostenible de las HetNets densamente construidas. Las contribuciones de esta tesis se dividen en dos partes principales, como se describe a continuación. La primera parte de la tesis presenta un enfoque innovador sobre la descarga subcontratada de tráfico, en el que presentamos un marco para el uso compartido de la red de acceso de radio de múltiples operadores (Multi-Operator RAN, MORAN). El marco propuesto se basa en un esquema de subasta utilizado por un operador monopólico de celda pequeña (Small Cell Operator, SCO), a través del cual arrienda su infraestructura SC a MNOs. Como la falta de información sobre la futura carga de red y las estrategias de subasta creaban incertidumbre para los MNO, diseñamos un mecanismo de aprendizaje que asiste a los MNO en sus decisiones de colocación de pujas. Nuestras simulaciones muestran que nuestra propuesta casi maximiza el bienestar social, satisfaciendo a las partes interesadas involucradas y proporcionándoles incentivos de participación. La segunda parte de la tesis investiga el uso de las funciones económicas y de red para la maximización de los beneficios de los MNOs, al tiempo que garantiza la satisfacción de los usuarios. Particularmente, diseñamos un modelo que acomoda una gran cantidad de servicios con diversos requisitos de QoS y QoE, tanto como diversos precios, es decir, varios precios de servicio y diferentes esquemas de cobro. En este modelo, propusimos algoritmos QoE-conscientes para asociación de usuarios, asignación de recursos y conjunta asignación de recursos y de fijación dinámica de precios, que explotan la conciencia de QoE y los aspectos económicos de la red, como la ganancia. Nuestras simulaciones han demostrado que nuestras propuestas obtienen un beneficio sustancial en comparación con las soluciones tradicionales y del estado del arte, a la vez que proporcionan un rendimiento de red similar o incluso mejor

    Distributed optimisation techniques for wireless networks

    Get PDF
    Alongside the ever increasing traffic demand, the fifth generation (5G) cellular network architecture is being proposed to provide better quality of service, increased data rate, decreased latency, and increased capacity. Without any doubt, the 5G cellular network will comprise of ultra-dense networks and multiple input multiple output technologies. This will make the current centralised solutions impractical due to increased complexity. Moreover, the amount of coordination information that needs to be transported over the backhaul links will be increased. Distributed or decentralised solutions are promising to provide better alternatives. This thesis proposes new distributed algorithms for wireless networks which aim to reduce the amount of system overheads in the backhaul links and the system complexity. The analysis of conflicts amongst transmitters, and resource allocation are conducted via the use of game theory, convex optimisation, and auction theory. Firstly, game-theoretic model is used to analyse a mixed quality of service (QoS) strategic non-cooperative game (SNG), for a two-user multiple-input single-output (MISO) interference channel. The players are considered to have different objectives. Following this, the mixed QoS SNG is extended to a multicell multiuser network in terms of signal-to-interference-and-noise ratio (SINR) requirement. In the multicell multiuser setting, each transmitter is assumed to be serving real time users (RTUs) and non-real time users (NRTUs), simultaneously. A novel mixed QoS SNG algorithm is proposed, with its operating point identified as the Nash equilibrium-mixed QoS (NE-mixed QoS). Nash, Kalai-Smorodinsky, and Egalitarian bargain solutions are then proposed to improve the performance of the NE-mixed QoS. The performance of the bargain solutions are observed to be comparable to the centralised solutions. Secondly, user offloading and user association problems are addressed for small cells using auction theory. The main base station wishes to offload some of its users to privately owned small cell access points. A novel bid-wait-auction (BWA) algorithm, which allows single-item bidding at each auction round, is designed to decompose the combinatorial mathematical nature of the problem. An analysis on the existence and uniqueness of the dominant strategy equilibrium is conducted. The BWA is then used to form the forward BWA (FBWA) and the backward BWA (BBWA). It is observed that the BBWA allows more users to be admitted as compared to the FBWA. Finally, simultaneous multiple-round ascending auction (SMRA), altered SMRA (ASMRA), sequential combinatorial auction with item bidding (SCAIB), and repetitive combinatorial auction with item bidding (RCAIB) algorithms are proposed to perform user offloading and user association for small cells. These algorithms are able to allow bundle bidding. It is then proven that, truthful bidding is individually rational and leads to Walrasian equilibrium. The performance of the proposed auction based algorithms is evaluated. It is observed that the proposed algorithms match the performance of the centralised solutions when the guest users have low target rates. The SCAIB algorithm is shown to be the most preferred as it provides high admission rate and competitive revenue to the bidders

    ACCESS AND STABILITY ISSUES IN SPECTRUM COMMONS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Delay and energy efficiency optimizations in smart grid neighbourhood area networks

    Get PDF
    Smart grids play a significant role in addressing climate change and growing energy demand. The role of smart grids includes reducing greenhouse gas emission reduction by providing alternative energy resources to the traditional grid. Smart grids exploit renewable energy resources into the power grid and provide effective two-way communications between smart grid domains for efficient grid control. The smart grid communication plays a pivotal role in coordinating energy generation, energy transmission, and energy distribution. Cellular technology with long term evolution (LTE)-based standards has been a preference for smart grid communication networks. However, integrating the cellular technology and the smart grid communication network puts forth a significant challenge for the LTE because LTE was initially invented for human centric broadband purpose. Delay and energy efficiency are two critical parameters in smart grid communication networks. Some data in smart grids are real-time delay-sensitive data which is crucial in ensuring stability of the grid. On the other hand, when abnormal events occur, most communication devices in smart grids are powered by local energy sources with limited power supply, therefore energy-efficient communications are required. This thesis studies energy-efficient and delay-optimization schemes in smart grid communication networks to make the grid more efficient and reliable. A joint power control and mode selection in device-to-device communications underlying cellular networks is proposed for energy management in the Future Renewable Electric Energy Delivery and Managements system. Moreover, a joint resource allocation and power control in heterogeneous cellular networks is proposed for phasor measurement units to achieve efficient grid control. Simulation results are presented to show the effectiveness of the proposed schemes
    corecore