55,412 research outputs found

    A Benchmark of Video-Based Clothes-Changing Person Re-Identification

    Full text link
    Person re-identification (Re-ID) is a classical computer vision task and has achieved great progress so far. Recently, long-term Re-ID with clothes-changing has attracted increasing attention. However, existing methods mainly focus on image-based setting, where richer temporal information is overlooked. In this paper, we focus on the relatively new yet practical problem of clothes-changing video-based person re-identification (CCVReID), which is less studied. We systematically study this problem by simultaneously considering the challenge of the clothes inconsistency issue and the temporal information contained in the video sequence for the person Re-ID problem. Based on this, we develop a two-branch confidence-aware re-ranking framework for handling the CCVReID problem. The proposed framework integrates two branches that consider both the classical appearance features and cloth-free gait features through a confidence-guided re-ranking strategy. This method provides the baseline method for further studies. Also, we build two new benchmark datasets for CCVReID problem, including a large-scale synthetic video dataset and a real-world one, both containing human sequences with various clothing changes. We will release the benchmark and code in this work to the public

    Learning Clothing and Pose Invariant 3D Shape Representation for Long-Term Person Re-Identification

    Full text link
    Long-Term Person Re-Identification (LT-ReID) has become increasingly crucial in computer vision and biometrics. In this work, we aim to extend LT-ReID beyond pedestrian recognition to include a wider range of real-world human activities while still accounting for cloth-changing scenarios over large time gaps. This setting poses additional challenges due to the geometric misalignment and appearance ambiguity caused by the diversity of human pose and clothing. To address these challenges, we propose a new approach 3DInvarReID for (i) disentangling identity from non-identity components (pose, clothing shape, and texture) of 3D clothed humans, and (ii) reconstructing accurate 3D clothed body shapes and learning discriminative features of naked body shapes for person ReID in a joint manner. To better evaluate our study of LT-ReID, we collect a real-world dataset called CCDA, which contains a wide variety of human activities and clothing changes. Experimentally, we show the superior performance of our approach for person ReID.Comment: 10 pages, 7 figures, accepted by ICCV 202

    Wrapping and unwrapping, concepts and approaches

    Get PDF
    No abstract available

    Exploring Shape Embedding for Cloth-Changing Person Re-Identification via 2D-3D Correspondences

    Full text link
    Cloth-Changing Person Re-Identification (CC-ReID) is a common and realistic problem since fashion constantly changes over time and people's aesthetic preferences are not set in stone. While most existing cloth-changing ReID methods focus on learning cloth-agnostic identity representations from coarse semantic cues (e.g. silhouettes and part segmentation maps), they neglect the continuous shape distributions at the pixel level. In this paper, we propose Continuous Surface Correspondence Learning (CSCL), a new shape embedding paradigm for cloth-changing ReID. CSCL establishes continuous correspondences between a 2D image plane and a canonical 3D body surface via pixel-to-vertex classification, which naturally aligns a person image to the surface of a 3D human model and simultaneously obtains pixel-wise surface embeddings. We further extract fine-grained shape features from the learned surface embeddings and then integrate them with global RGB features via a carefully designed cross-modality fusion module. The shape embedding paradigm based on 2D-3D correspondences remarkably enhances the model's global understanding of human body shape. To promote the study of ReID under clothing change, we construct 3D Dense Persons (DP3D), which is the first large-scale cloth-changing ReID dataset that provides densely annotated 2D-3D correspondences and a precise 3D mesh for each person image, while containing diverse cloth-changing cases over all four seasons. Experiments on both cloth-changing and cloth-consistent ReID benchmarks validate the effectiveness of our method.Comment: Accepted by ACM MM 202

    Exploring Fine-Grained Representation and Recomposition for Cloth-Changing Person Re-Identification

    Full text link
    Cloth-changing person Re-IDentification (Re-ID) is a particularly challenging task, suffering from two limitations of inferior identity-relevant features and limited training samples. Existing methods mainly leverage auxiliary information to facilitate discriminative feature learning, including soft-biometrics features of shapes and gaits, and additional labels of clothing. However, these information may be unavailable in real-world applications. In this paper, we propose a novel FIne-grained Representation and Recomposition (FIRe2^{2}) framework to tackle both limitations without any auxiliary information. Specifically, we first design a Fine-grained Feature Mining (FFM) module to separately cluster images of each person. Images with similar so-called fine-grained attributes (e.g., clothes and viewpoints) are encouraged to cluster together. An attribute-aware classification loss is introduced to perform fine-grained learning based on cluster labels, which are not shared among different people, promoting the model to learn identity-relevant features. Furthermore, by taking full advantage of the clustered fine-grained attributes, we present a Fine-grained Attribute Recomposition (FAR) module to recompose image features with different attributes in the latent space. It can significantly enhance representations for robust feature learning. Extensive experiments demonstrate that FIRe2^{2} can achieve state-of-the-art performance on five widely-used cloth-changing person Re-ID benchmarks

    Identity-Guided Collaborative Learning for Cloth-Changing Person Reidentification

    Full text link
    Cloth-changing person reidentification (ReID) is a newly emerging research topic that is aimed at addressing the issues of large feature variations due to cloth-changing and pedestrian view/pose changes. Although significant progress has been achieved by introducing extra information (e.g., human contour sketching information, human body keypoints, and 3D human information), cloth-changing person ReID is still challenging due to impressionable pedestrian representations. Moreover, human semantic information and pedestrian identity information are not fully explored. To solve these issues, we propose a novel identity-guided collaborative learning scheme (IGCL) for cloth-changing person ReID, where the human semantic is fully utilized and the identity is unchangeable to guide collaborative learning. First, we design a novel clothing attention degradation stream to reasonably reduce the interference caused by clothing information where clothing attention and mid-level collaborative learning are employed. Second, we propose a human semantic attention and body jigsaw stream to highlight the human semantic information and simulate different poses of the same identity. In this way, the extraction features not only focus on human semantic information that is unrelated to the background but also are suitable for pedestrian pose variations. Moreover, a pedestrian identity enhancement stream is further proposed to enhance the identity importance and extract more favorable identity robust features. Most importantly, all these streams are jointly explored in an end-to-end unified framework, and the identity is utilized to guide the optimization. Extensive experiments on five public clothing person ReID datasets demonstrate that the proposed IGCL significantly outperforms SOTA methods and that the extracted feature is more robust, discriminative, and clothing-irrelevant
    corecore