35 research outputs found

    Augmented reality device for first response scenarios

    Get PDF
    A prototype of a wearable computer system is proposed and implemented using commercial off-shelf components. The system is designed to allow the user to access location-specific information about an environment, and to provide capability for user tracking. Areas of applicability include primarily first response scenarios, with possible applications in maintenance or construction of buildings and other structures. Necessary preparation of the target environment prior to system\u27s deployment is limited to noninvasive labeling using optical fiducial markers. The system relies on computational vision methods for registration of labels and user position. With the system the user has access to on-demand information relevant to a particular real-world location. Team collaboration is assisted by user tracking and real-time visualizations of team member positions within the environment. The user interface and display methods are inspired by Augmented Reality1 (AR) techniques, incorporating a video-see-through Head Mounted Display (HMD) and fingerbending sensor glove.*. 1Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. At present, most AR research is concerned with the use of live video imagery which is digitally processed and augmented by the addition of computer generated graphics. Advanced research includes the use of motion tracking data, fiducial marker recognition using machine vision, and the construction of controlled environments containing any number of sensors and actuators. (Source: Wikipedia) *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat; Microsoft Office; Windows MediaPlayer or RealPlayer

    Augmented Reality-based Indoor Navigation: A Comparative Analysis of Handheld Devices vs. Google Glass

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. U. Rehman, & S. Cao. (2017). IEEE Transactions on Human-Machine Systems, 47(1), 140–151. https://doi.org/10.1109/THMS.2016.2620106Navigation systems have been widely used in outdoor environments, but indoor navigation systems are still in early development stages. In this paper, we introduced an augmented-reality-based indoor navigation application to assist people navigate in indoor environments. The application can be implemented on electronic devices such as a smartphone or a head-mounted device. In particular, we examined Google Glass as a wearable head-mounted device in comparison with handheld navigation aids including a smartphone and a paper map. We conducted both a technical assessment study and a human factors study. The technical assessment established the feasibility and reliability of the system. The human factors study evaluated human-machine system performance measures including perceived accuracy, navigation time, subjective comfort, subjective workload, and route memory retention. The results showed that the wearable device was perceived to be more accurate, but other performance and workload results indicated that the wearable device was not significantly different from the handheld smartphone. We also found that both digital navigation aids were better than the paper map in terms of shorter navigation time and lower workload, but digital navigation aids resulted in worse route retention. These results could provide empirical evidence supporting future designs of indoor navigation systems. Implications and future research were also discussed.This work was supported in part by NSERC Discovery Grant RGPIN-2015-04134

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Enhanced Concrete Bridge Assessment Using Artificial Intelligence and Mixed Reality

    Get PDF
    Conventional methods for visual assessment of civil infrastructures have certain limitations, such as subjectivity of the collected data, long inspection time, and high cost of labor. Although some new technologies (i.e. robotic techniques) that are currently in practice can collect objective, quantified data, the inspector\u27s own expertise is still critical in many instances since these technologies are not designed to work interactively with human inspector. This study aims to create a smart, human-centered method that offers significant contributions to infrastructure inspection, maintenance, management practice, and safety for the bridge owners. By developing a smart Mixed Reality (MR) framework, which can be integrated into a wearable holographic headset device, a bridge inspector, for example, can automatically analyze a certain defect such as a crack that he or she sees on an element, display its dimension information in real-time along with the condition state. Such systems can potentially decrease the time and cost of infrastructure inspections by accelerating essential tasks of the inspector such as defect measurement, condition assessment and data processing to management systems. The human centered artificial intelligence (AI) will help the inspector collect more quantified and objective data while incorporating inspector\u27s professional judgment. This study explains in detail the described system and related methodologies of implementing attention guided semi-supervised deep learning into mixed reality technology, which interacts with the human inspector during assessment. Thereby, the inspector and the AI will collaborate/communicate for improved visual inspection

    Alternative realities : from augmented reality to mobile mixed reality

    Get PDF
    This thesis provides an overview of (mobile) augmented and mixed reality by clarifying the different concepts of reality, briefly covering the technology behind mobile augmented and mixed reality systems, conducting a concise survey of existing and emerging mobile augmented and mixed reality applications and devices. Based on the previous analysis and the survey, this work will next attempt to assess what mobile augmented and mixed reality could make possible, and what related applications and environments could offer to users, if tapped into their full potential. Additionally, this work briefly discusses what might be the cause for mobile augmented reality not yet being widely adopted to everyday use, even though many such applications already exist for the smartphone platform, and smartglass systems slowly becoming increasingly common. Other related topics and issues that are briefly covered include information security and privacy issues related to mobile augmented and mixed reality systems, the link between mobile mixed reality and ubiquitous computing, previously conducted user studies, as well as user needs and user experience issues. The overall purpose of this thesis is to demonstrate what is already possible to implement on the mobile platform (including both hand-held devices and head-mounted configurations) by using augmented and mixed reality interfaces, and to consider how mobile mixed reality systems could be improved, based on existing products, studies and lessons learned from the survey conducted in this thesis

    Augmented Reality for Indoor Navigation and Task Guidance

    Get PDF
    Modern augmented reality systems are becoming increasingly popular in different industrial sectors as augmented reality based applications can improve performance and reduce workload during operations. The efficacy of such systems, however, has not been comprehensively investigated from human factors and performance standpoints. This research explores the design, development and evaluation of augmented reality based prototype applications for two discrete domain areas which include indoor navigation (Part II) and procedural task support in nuclear power plants (Part III). Augmented Reality-Based Indoor Navigation: In the study, we introduced an augmented reality-based indoor navigation application that utilizes pre-scanned environmental features and markerless tracking technology to assist people to navigate in indoor environments. The application can be implemented on electronic devices such as a smartphone or a head-mounted display, providing both visual and auditory instructions. In particular, we examined Google Glass as a wearable head-mounted device in comparison to hand-held navigation aids including a smartphone and a paper map. We conducted both a technical assessment study and a human factors study to comprehensively evaluate the system. The technical assessment established the feasibility and reliability of the system. The human factors study evaluated human-machine system performance measures including perceived accuracy, navigation time, subjective comfort, subjective workload, and route memory retention. The results showed that the wearable device was perceived to be more accurate, but other performance and workload results indicated that the wearable device was not significantly different from the hand-held smartphone. We also found that both digital navigation aids were better than the paper map in terms of shorter navigation time and lower workload, but digital navigation aids resulted in worse route retention. These results could provide empirical evidence supporting future designs of indoor navigation systems. Implications and future research were also discussed. Augmented Reality-Based Task Assistance in Nuclear Power Plants: This research illustrates the design, development and human factors evaluation of an augmented reality based procedural task guidance system, implemented on a hand-held tablet device (ipad), in order to support nuclear power plant operators with main control room operations. After conducting an extensive literature review, we detail the development stages of our new application prototype that employs marker based tracking to superimpose computer generated instructions in the live view of the operators control panel. We had hypothesized that the augmented reality-based procedures would perform better than the traditional methods currently used in nuclear power plants that include computer-based procedures and paper-based procedures. A research study was devised and carried out that compared the three methods of procedural instructions. The performance evaluation and human factors study revealed that the augmented reality based prototype solution reduced operator’s workload, increased operators situation awareness, made processes efficient and less prone to errors and reduced inquiry communication. The results also led us to conclude that augmented reality based procedural assistance poorly supports memory retention and skill learning amongst operators

    Yield sensing technologies for perennial and annual horticultural crops: a review

    Get PDF
    Yield maps provide a detailed account of crop production and potential revenue of a farm. This level of details enables a range of possibilities from improving input management, conducting on-farm experimentation, or generating profitability map, thus creating value for farmers. While this technology is widely available for field crops such as maize, soybean and grain, few yield sensing systems exist for horticultural crops such as berries, field vegetable or orchards. Nevertheless, a wide range of techniques and technologies have been investigated as potential means of sensing crop yield for horticultural crops. This paper reviews yield monitoring approaches that can be divided into proximal, either direct or indirect, and remote measurement principles. It reviews remote sensing as a way to estimate and forecast yield prior to harvest. For each approach, basic principles are explained as well as examples of application in horticultural crops and success rate. The different approaches provide whether a deterministic (direct measurement of weight for instance) or an empirical (capacitance measurements correlated to weight for instance) result, which may impact transferability. The discussion also covers the level of precision required for different tasks and the trend and future perspectives. This review demonstrated the need for more commercial solutions to map yield of horticultural crops. It also showed that several approaches have demonstrated high success rate and that combining technologies may be the best way to provide enough accuracy and robustness for future commercial systems

    Augmented Reality and Its Application

    Get PDF
    Augmented Reality (AR) is a discipline that includes the interactive experience of a real-world environment, in which real-world objects and elements are enhanced using computer perceptual information. It has many potential applications in education, medicine, and engineering, among other fields. This book explores these potential uses, presenting case studies and investigations of AR for vocational training, emergency response, interior design, architecture, and much more

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Modern Information Systems

    Get PDF
    The development of modern information systems is a demanding task. New technologies and tools are designed, implemented and presented in the market on a daily bases. User needs change dramatically fast and the IT industry copes to reach the level of efficiency and adaptability for its systems in order to be competitive and up-to-date. Thus, the realization of modern information systems with great characteristics and functionalities implemented for specific areas of interest is a fact of our modern and demanding digital society and this is the main scope of this book. Therefore, this book aims to present a number of innovative and recently developed information systems. It is titled "Modern Information Systems" and includes 8 chapters. This book may assist researchers on studying the innovative functions of modern systems in various areas like health, telematics, knowledge management, etc. It can also assist young students in capturing the new research tendencies of the information systems' development
    corecore